• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 28
  • 10
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 177
  • 102
  • 48
  • 36
  • 32
  • 28
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

M1 muscarinic acetylcholine receptor regulation of endogenous transient receptor potential-canonical, subtype 6 (TRPC6) channels

Kim, Ju Young. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xviii, 178 p.; also includes graphics. Includes bibliographical references (p. 163-178). Available online via OhioLINK's ETD Center
22

Characterization and regulation of muscarinic acetylcholine receptor signaling by calmodulin /

Lucas, Julie Lynn January 2004 (has links)
Thesis (Ph.D.)--University of California, San Francisco, 2004. / Includes bibliographical references. Also available online.
23

Autonomic and Cholinergic Mechanisms Mediating Cardiovascular and Temperature Effects of Donepezil in Conscious Mice

Polichnowski, Aaron J., Williamson, Geoffrey A., Blair, Tesha E., Hoover, Donald B. 01 June 2021 (has links)
Donepezil is a centrally acting acetylcholinesterase (AChE) inhibitor with therapeutic potential in inflammatory diseases; however, the underlying autonomic and cholinergic mechanisms remain unclear. Here, we assessed effects of donepezil on mean arterial pressure (MAP), heart rate (HR), HR variability, and body temperature in conscious adult male C57BL/6 mice to investigate the autonomic pathways involved. Central versus peripheral cholinergic effects of donepezil were assessed using pharmacological approaches including comparison with the peripherally acting AChE inhibitor, neostigmine. Drug treatments included donepezil (2.5 or 5 mg/kg sc), neostigmine methyl sulfate (80 or 240 μg/kg ip), atropine sulfate (5 mg/kg ip), atropine methyl bromide (5 mg/ kg ip), or saline. Donepezil, at 2.5 and 5 mg/kg, decreased HR by 36 ± 4% and 44 ± 3% compared with saline (n = 10, P < 0.001). Donepezil, at 2.5 and 5 mg/kg, decreased temperature by 13 ± 2% and 22 ± 2% compared with saline (n = 6, P < 0.001). Modest (P < 0.001) increases in MAP were observed with donepezil after peak bradycardia occurred. Atropine sulfate and atropine methyl bromide blocked bradycardic responses to donepezil, but only atropine sulfate attenuated hypothermia. The pressor response to donepezil was similar in mice coadministered atropine sulfate; however, coadministration of atropine methyl bromide potentiated the increase in MAP. Neostigmine did not alter HR or temperature, but did result in early increases in MAP. Despite the marked bradycardia, donepezil did not increase normalized high-frequency HR variability. We conclude that donepezil causes marked bradycardia and hypothermia in conscious mice via the activation of muscarinic receptors while concurrently increasing MAP via autonomic and cholinergic pathways that remain to be elucidated.
24

Impact of Muscarinic Receptor Activation on Neural Stem Cell Differentiation

Ge, Shufan January 2010 (has links)
No description available.
25

DESIGN, SYNTHESIS AND EVALUATION OF NOVEL MUSCARINIC LIGANDS

Gao, Rong January 2013 (has links)
Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Although five mAChR subtypes (M1-M5) share a high degree of homology, they display different physiological effects including controlling smooth muscle tone to neurotransmitter release in the CNS. Hence these receptor subtypes have been investigated as potential therapeutic targets for agents capable of treating Alzheimer's Disease, Parkinson's Disease, peptic ulcer disease, COPD, urinary incontinence, and muscle spasms. Our interest in the development of subtype selective muscarinic ligands led to previous reports detailing the identification of substituted lactones as lead muscarinic compounds. Later work involved molecular modifications of those leads that included the addition of aromatic groups with a variety of substitution patterns. These efforts led to an increase in receptor affinity and produced a lactone-based muscarinic ligand with an IC50 of 340nM. As a continuation of that work, additional novel ligands were designed based on the general pharmacophoric elements proposed for the lactone-based ligands. In that model, the lactone oxygens serve as H-bond acceptor moieties while different nitrogen containing heterocycles provide the requisite cationic group. These groups may be separated by linker groups of varying sizes. In order to synthesize the lactone-based ligands mentioned above, efficient synthetic routes are required for key precursors. These include but are not limited to: 1. A novel high yield synthesis of the hydroxyethyl-lactone precursor was designed using a carefully controlled Prins reaction. The method readily quenches a cationic intermediate and simultaneously protects hydroxyl groups in a single step. A mechanism for the new route to the precursor is proposed and its use in the preparation of the target compounds is presented 2. Microwave-assisted synthesis of various sterically hindered N-aryl piperazines has been developed allowing quick access to structurally diverse muscarinic ligands These synthesis along with other newly developed routes enabled ready access to 59 novel muscarinic ligands. The ligands were tested in a general muscarinic binding assay. The result was analyzed and SAR study was performed to direct ligand design. As a result of this work, ligand affinity was improved by over 100 folds compare to the lead molecules. Several promising compounds were selected and selectivity tested. / Pharmaceutical Sciences
26

The role of beta-arrestin in regulating the muscarinic acetylcholine type II receptor

Jones, Kymry Thereasa 06 July 2007 (has links)
The muscarinic acetylcholine type 2 receptor (M2 mAChR), a member of the GPCR superfamily, is found throughout the parasympathetic nervous system where it controls pulmonary, urinary, and cardiac function, and neurotransmission. The molecular mechanisms that regulate M2 mAChR availability at the cell surface are an important component in controlling these physiological events. Since beta-arrestin proteins are known to regulate the activity of other GPCRs, we sought to identify their role in regulating M2 mAChR activity, a topic that remains contentious in the field. To achieve this goal we utilized mouse embryonic fibroblasts (MEFs) derived from beta-arrestin knockout mice lacking one or both isoforms (MEF KO1, KO2, or KO1/2 cells) in addition to exogenous expression of beta-arrestin mutants. This study demonstrates that agonist-induced internalization of M2 mAChR is beta-arrestin- and clathrin-dependent, and that the receptor stably co-localizes with beta-arrestin in early endosomal vesicles suggesting it behaves as a class B receptor. Next, we sought to identify beta-arrestin s function in regulating the post-endocytic trafficking (down-regulation) of the M2 mAChR. MEF KO1/2 cells were unable to down-regulate M2 mAChRs whereas MEF KO1 or KO2 cells retained the ability to do so. In MEFwt cells, both M2 mAChR and beta-arrestin exhibited basal ubiquitination that increased following agonist stimulation. Receptor degradation appeared to be regulated by the ubiquitination status of beta-arrestin 2, since expression of a chimeric â-arrestin 2 form fused to ubiquitin increased both constitutive and agonist-promoted down-regulation, whereas expression of a beta-arrestin 2 mutant lacking putative ubiquitination sites, beta-arrestin 2K18R, K107R, K108R, K207R, K296R, significantly blocked degradation while internalization and stable association remained intact. Upon further analysis, the beta-arrestin 2K18R, K107R, K108R, K207R, K296R mutant blocked delivery of M2 mAChR to the late endosome/lysosome, presumably where degradation occurs. Inhibition of proteasome-dependent recycling of ubiquitin blocked receptor down-regulation without affecting internalization or the ubiquitination state of the M2 mAChR while ubiquitination of beta-arrestin 2 diminished significantly. These results support a role for ubiquitinated beta-arrestin in mediating M2 mAChR sorting and degradation in the lysosome. Collectively, these studies give us new insight on the function of beta-arrestin in regulating the activity of the M2 mAChR.
27

Targets for pharmacological intervention in the bladder and urethra

Waldeck, Kristian. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
28

Targets for pharmacological intervention in the bladder and urethra

Waldeck, Kristian. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
29

Regulation of Excitation-Contraction and Excitation-Transcription Coupling in Gastrointestinal Smooth Muscle by Caveolin-1

bhattacharya, Sayak 26 October 2012 (has links)
Caveolae are integral part of the smooth muscle membrane and caveolins, the defining proteins of caveolae, act as scaffolding proteins for several G protein-coupled receptor signaling molecules and regulate cellular signaling through direct and indirect interactions with signaling proteins. Caveolin-1 is the predominant isoform in the smooth muscle and drives the formation of caveolae. However, little is known about the role of caveolin-1 in the regulation of excitation-contraction and excitation-transcription coupling in gastrointestinal smooth muscle. In the present study we have characterized muscarinic m2 and m3 receptor signaling in gastric smooth muscle and tested the hypothesis that caveolin-1 positively regulates muscarinic receptor signaling and contractile protein expression in smooth muscle. The role of caveolae/caveolin-1 in the regulation of muscarinic signaling was examined using complementary approaches: a) methyl b-cyclodextrin (MbCD) to deplete cholesterol in dispersed muscle cells, b) caveolin-1 siRNA to suppress caveolin-1 expression in cultured muscle cells, and c) caveolin-1 knockout (KO) mice. RT-PCR, western blot and radioligand binding studies demonstrated the selective expression of m2 and m3 receptor in gastric smooth muscle cells. Carbachol (CCh), acting via m3 receptors caused stimulation of phosphoinositide (PI) hydrolysis, Rho kinase and ZIP kinase activity, and induced phosphorylation of MYPT1 (at Thr696) and MLC20 (at Ser19), and muscle contraction, and acting via m2 receptors caused inhibition of forskolin stimulated cAMP formation. Stimulation of PI hydrolysis, Rho kinase and ZIP kinase activities, phosphorylation of MYPT1 and MLC20 phosphorylation and muscle contraction in response to CCh was attenuated in dispersed cells treated with MbCD or in cultured cells transfected with caveolin-1 siRNA. Similar inhibition of all responses was obtained in gastric muscle cells from caveolin-1 KO mice compared to gastric muscle cells to WT mice. Although, caveolin-1 had no effect on m2 receptor signaling, agonist-induced internalization of m2, but not m3 receptors was blocked in dispersed cells treated with MbCD or in cultured cells transfected with caveolin-1 siRNA. These results suggest that caveolin-1 selectively and positively regulates Gq/13-coupled m3 receptor signaling, Gi-coupled m2 receptor internalization. The expression of contractile proteins, g-actin and caldesmone and the transcription factors SRF and myocardin that regulate the expression of contractile proteins are down regulated, whereas EGF-stimulated EGF receptor phosphorylation and ERK1/2 activity are up-regulated in cells transfected with caveolin-1 siRNA. These results suggest using pharmacological, molecular and genetic approaches provide conclusive evidence that caveolae and caveolin-1 play an important role in orchestrating G protein coupled receptor signaling to have dual pro- excitation-contraction and excitation-transcription coupling, and anti-proliferative role in gastric smooth muscle.
30

Mechanismy přenosu signálu muskarinovými receptory / Mechanisms of signal transduction via the muscarinic receptors

Dolejší, Eva January 2015 (has links)
Muscarinic acetylcholine receptors (mAChR) belong to the family of G-protein coupled receptors. There are five subtypes of mAChR denoted M1 to M5 that are widely and differentially distributed in both the central nervous system and periphery and play an important role in many specific physiological functions. Impairment of muscarinic neurotransmission occurs in serious disorders such as Alzheimer's disease, schizophrenia or Parkinson's disease that are accompanied by cognitive decline mainly due to the disruption of M1 receptor signaling in the brain. Unfortunately, the high degree homology of the orthosteric binding site among muscarinic receptor subtypes makes it very difficult to obtain subtype- selective agonists. One of the few known selective agonists is xanomeline that preferentially activates the M1 and M4 subtypes. Xanomeline exerts unique interactions with muscarinic receptors comprising reversible binding to the orthosteric domain, and wash-resistant allosteric interaction with a secondary binding site. The basis of xanomeline functional selectivity remains largely unknown. In an attempt to probe into such mechanisms we investigated the immediate and long-term effects of xanomeline on activation of muscarinic receptors, using intact Chinese hamster ovary (CHO) cells expressing individual...

Page generated in 0.0324 seconds