• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 28
  • 10
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 177
  • 102
  • 48
  • 36
  • 32
  • 28
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Localization of Muscarinic Receptor mRNAs in Rat Heart and Intrinsic Cardiac Ganglia by in Situ Hybridization

Hoover, Donald B., Baisden, Ronald H., Xi-Moy, Sylvia X. 01 January 1994 (has links)
Although the heart is considered a relatively pure source of m2 muscarinic receptors, the possible expression of other muscarinic receptor genes at discrete sites within the myocardium or by intrinsic cardiac ganglia had not been evaluated. Accordingly, the present study used in situ hybridization histochemistry with 35S-labeled oligonucleotide probes to address this tissue. Initial experiments demonstrated that the localization of m2 mRNA was similar to that reported for muscarinic receptors labeled with the nonselective muscarinic antagonist quinuclidinyl benzilate; however, there were two important exceptions. The conducting system contained less message than expected, whereas the intrinsic cardiac ganglia contained more. The mismatch between muscarinic receptor and m2 mRNA densities in the conducting system could not be explained by the local expression of other muscarinic receptor genes, since m1, m3, and m4 mRNAs were not detected at this or any other site within the myocardium. However, the presence of a high density of prejunctional muscarinic receptors in the conducting system would be consistent with such a mismatch. Surprisingly, the intrinsic cardiac ganglia contained more than four times as much m2 mRNA as found in the atria. This level of message may be necessary for the production of prejunctional receptors on cholinergic nerve fibers within the heart and receptors localized to the ganglion cell bodies. The ganglia also contained smaller amounts of m1 and m4 mRNAs. These observations suggest that prejunctional muscarinic receptors could have a prominent role in regulating cholinergic neurotransmission in the conducting system and that multiple muscarinic receptors are present in the intrinsic cardiac ganglia.
52

Allosteric Modulation of M1 Muscarinic Receptors by Amiodarone and Related Ligands

Slane, Elizabeth Goldie January 2020 (has links)
No description available.
53

The Effects of Scopolamine on Rat Serial Pattern Learning and Reversal Learning

Chenoweth, Amber M. 16 July 2010 (has links)
No description available.
54

The effects of age on muscarinic and alpha adrenergic receptor systems of the rat urinary bladder /

Ordway, Gregory Allen January 1985 (has links)
No description available.
55

Investigation into the bioisosteric approach in the design, synthesis and evaluation of muscarinic receptor ligands

Bhandare, Richie R. January 2013 (has links)
The acetylcholine (ACh) receptor system belongs to rhodopsin GPCR family and is an integral membrane protein divided into two types: muscarinic and nicotinic. The naturally occurring neurotransmitter acetylcholine binds to these two receptor systems non- selectively. The regulatory effects of the neurotransmitter acetylcholine are diverse ranging from autonomic nervous system and the central nervous system through different types of neurons innervated by cholinergic inputs. Muscarinic acetylcholine receptors (mAChRs) are divided into five receptor subtypes (M1-M5). In general, M1, M3 and M5 receptor subtypes are coupled via Gq like proteins; while M2 and M4 subtypes are coupled to Gi-proteins. Muscarinic receptors are widely distributed in the body where they mediate a variety of important physiological effects. mAChRs have been the target of drug development efforts for the treatment of various disorders including overactive bladder, Alzheimer's disease, pain, cognitive impairment, drug addiction, schizophrenia and Parkinson's disease. The development subtype selective ligands possess a challenge due to a high degree of homology among mAChR subtypes, however the recent availability of the X-ray crystal structure for the M2 and M3 receptor can be utilized for the design of new ligands. The pharmacophoric requirements for cholinergic ligands have been reported by numerous investigators based on structure-activity relationship (SAR) and/or molecular modeling data of known muscarinic ligands. These fundamental requirements are useful when designing muscarinic ligands but have provided little guidance in the design of subtype selective compounds. Our interest in developing novel muscarinic receptor ligands led to the design of lactone-based ligands using an approach similar to that reported by Kaiser et al. Preliminary binding studies of our previously synthesized lactone based compounds indicated that several were nonselective, low affinity (IC50 = µM range) muscarinic agonists (based on preliminary in vivo data). Hence based on the background information, we decided to utilize the previously synthesized lactone parent compound as lead molecule set out to investigate a new series of lactone based compounds in order improve the affinity and later the selectivity of ligands. Bioisosteric approach has been investigated for the metabolic lability of the lactone ring. Four probable bioisosteres have been evaluated: tetrahydrofuran, 1,3-benzodioxole, oxazolidinone and chromone. Thermal/microwave assisted synthesis has been utilized in the generation of intermediates as well as final compounds. Preliminary screening and further evaluation (IC50/ subtype selectivity) has resulted in the identification of promising fragments as bioisosteres for the lactone ring. / Pharmaceutical Sciences / Accompanied by one .pdf file.
56

Muscarinic Receptor Modulation of the Phospholipid Effect in Cardiac Myocytes

Mattern, Janet 05 1900 (has links)
The muscarinic agonist carbachol stimulates a rapid increase in ^32Pi incorporation into phosphatidic acid (PA) and phosphatidylinositol (PI) in calcium tolerant myocytes prepared from heart tissue. The density of muscarinic receptors, determined by [^3H]-QNB binding, is greater in the atria than in the ventricles. 250 uM carbachol decreased specific [^3H]-QNB binding to muscarinic receptors on myocyte membranes by fifty percent. Trifluoperazine, also a phospholipase C inhibitor, inhibited the carbachol stimulated increase in ^32Pi incorporation into PA and PI and did not interfere with muscarinic receptor binding. Therefore, isolated canine myocytes provide a suitable model system to further study the muscarinic receptor stimulated phospholipid effect, and its role in mediating biochemical processes and physiological function in the heart.
57

On the role of nitric oxide in uterine secretion /

Mörlin, Birgitta, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
58

Effects of medicinal herbs on contraction rate of cultured cardiomyocyte. Possible mechanisms involved in the chronotropic effects of hawthorn and berberine in neonatal murine cardiomyocyte / Possible mechanisms involved in the chronotropic effects of hawthorn and berberine in neonatal murine cardiomyocyte

Salehi, Satin 29 September 2009 (has links)
Herbs have been used for many centuries in diverse civilizations for the treatment of heart disease. Only a few natural supplements claim to have direct cardiovascular actions including hawthorn (Crataegus spp.) and berberine derived from the Berberidaceae family. Several different studies indicate important cardiovascular effects of hawthorn and berberine. For example, both exert positive inotropic effects and have been used in the treatment of congestive heart failure. Recently, it was shown that hawthorn extract preparations cause negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. We hypothesized that hawthorn extract may be acting through muscarinic receptors to decrease contraction rate of cardiomyocytes. Atrial and ventricular cardiomyocytes were treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-3H] ([³H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [³H]-QNB binding to mouse heart membranes. These findings suggest that muscarinic receptors may be involved in the negative chronotropic effect of hawthorn extracts in neonatal murine cardiomyocytes. Berberine exhibits variable positive and negative chronotropic effects in different species. Our first aim was to examine the effect of berberine in a cultured neonatal murine cardiomyocyte assay. Our study demonstrates that berberine has significant negative chronotropic actions on cardiomyocytes which is not an effect of beta-adrenergic receptor blockade. Pertussis toxin (PTX), a Gi/o protein inhibitor, blocked the negative chronotropic activity of berberine. Muscarinic, adenosine, opioid, and α₂ receptors are coupled through a G-protein (Gi/o) to adenylyl cyclase in an inhibitory fashion. Activation of these receptors are primarily responsible for PTX-sensitive negative chronotropic effects in heart. We hypothesized that berberine may be acting through one of these receptor type to decrease contraction rate of cardiomyocytes. For this purpose, we studied the effects of the muscarinic-receptor antagonists, atropine, himbacine, or AF- DX 116 on the negative chronotropic activity of berberine. Muscarinic antagonists completely blocked the effect of berberine on contraction rate of cardiomyocytes, whereas the bradycardic effect of berberine was not inhibited by the opioid, adenosine, or α2 receptor antagonists naloxone, CGS 15943, or phentolamine, respectively. Using [³H]QNB as a radioligand, we demonstrated that berberine bound to muscarinic receptors of adult mouse heart membranes with relatively high affinity. Furthermore, berberine dose-dependently inhibited [³H]QNB binding to muscarinic M2 receptors exogenously expressed in HEK 293 cells. Therefore, the findings of the present study suggest that berberine has muscarinic agonist effects in cultured neonatal murine cardiomyocytes, potentially explaining reported physiological effects of berberine. Cardiac hypertrophy represents the most important factor in the development of congestive heart failure. We investigated the inhibitory effect of berberine on hypertrophy of H9c2 cells. In rat heart-derived H9c2 myoblast cells treated with different hypertrophic agonists such as insulin growth factor II (IGF-II), arginine vasopressin (AVP), phenylephrine, and isoproterenol, protein content and size of cells were significantly increased compared to control group. However, the number of H9c2 cells after treatment with hypertrophic agonists did not differ significantly compared to control. The increases in area of cells and protein content induced by the hypertrophic agonists were inhibited by treatment with berberine in a concentration-dependent manner. Our findings have provided the first scientific evidence that berberine may have an inhibitory effect on hypertrophy of heart-derived cells, and provide a rationale for further studies to evaluate berberine's cardiac activity. / Graduation date: 2010
59

Novos aspectos da aÃÃo de drogas antiepilÃpticas: efeitos antioxidantes e modulaÃÃo dos sistemas colinÃrgico e dopaminÃrgico. / New aspects of antiepileptic drugs action: antioxidant effects and modulation of cholinergic and dopaminergic systems.

Aline de Albuquerque Oliveira 15 July 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Levetiracetam (LEV), nova droga antiepilÃptica, apresenta eficÃcia na terapia adicional das convulsÃes e em modelos experimentais. Clonazepam (CNZP) à um benzodiazepÃnico utilizado no tratamento de convulsÃes mioclÃnicas e crises generalizadas. Melatonina (MEL), hormÃnio pineal, demonstra atividade anticonvulsivante em diversos modelos animais. Objetivando investigar novos mecanismos relacionados aos efeitos dessas drogas, foi realizado estudo comparativo, a partir da anÃlise da influÃncia do prÃ-tratamento com LEV, CNZP ou MEL sobre o estresse oxidativo neuronal e sobre a modulaÃÃo de sistemas de neurotransmissÃo (colinÃrgico e dopaminÃrgico) durante as convulsÃes induzidas por pilocarpina (400mg/Kg; P400). Camundongos Swiss, machos, 25-30g receberam LEV, 200 mg/Kg, CNZP, 0,5mg/Kg ou MEL, 25mg/Kg, i.p., (doses escolhidas à partir de curvas dose-resposta) 30min antes de P400. Hipocampo e corpo estriado foram removidos para as anÃlises neuroquÃmicas. Experimentos in vitro, onde homogenatos cerebrais foram incubados com as drogas em estudo (50, 100 ou 200g/mL), tambÃm permitiram analisar alteraÃÃes no estresse oxidativo apÃs a induÃÃo de choque tÃrmico e, ainda, a densidade de receptores muscarÃnicos no hipocampo. Os estudos sobre os efeitos sobre o sistema de neurotransmissores colinÃrgicos demonstraram que o prÃ-tratamento com LEV, CNZP ou MEL causou reduÃÃo nos tremores induzidos por oxotremorina e elevou a atividade da acetilcolinesterase no hipocampo. LEV e CNZP alteraram o binding dos receptores muscarÃnicos hipocampais in vivo, revertendo a downregulation induzida por P400, e ensaios in vitro demostraram alteraÃÃo no binding muscarÃnico hipocampal pela prÃvia incubaÃÃo com LEV, CNZP ou MEL. Os ensaios de binding demonstraram, ainda, a downregulation dos receptores D2 hipocampais nos animais tratados LEV, CNZP ou prÃ-tratados com MEL antes de P400. As anÃlises para investigaÃÃo da atividade antioxidante de LEV e CNZP e do papel da aÃÃo antioxidativa da MEL na proteÃÃo contra as convulsÃes permitiram observar que a associaÃÃo com vitamina E potencializou os efeitos anticonvulsivantes de todas as drogas estudas. A administraÃÃo prÃvia de LEV, CNZP ou MEL, antes de P400, reverteu o aumento nos nÃveis de peroxidaÃÃo lipÃdica e nitrito-nitrato e normalizou a atividade da catalase e os nÃveis fisiolÃgicos do antioxidante glutationa em hipocampo e/ou corpo estriado. Nos experimentos de stress oxidativo in vitro, o aumento da peroxidaÃÃo lÃpÃdica, dos nÃveis de nitrito-nitrato e da atividade da catalase nos homogenatos cerebrais submetidos ao choque tÃrmico, foram alterados de forma significativa pela incubaÃÃo prÃvia com LEV, CNZP ou MEL, onde estas drogas foram capazes de reduzir os nÃveis de MDA, de nitrito-nitrato e, ainda, estabilizar a atividade da catalase, potencializando, assim, a atividade enzimÃtica antioxidante endÃgena e a capacidade de inativaÃÃo de radicais livres. Dessa forma, o estudo sugere uma aÃÃo moduladora, exercida por LEV, CNZP e MEL sobre o funcionamento dos sistemas muscarÃnico e dopaminÃrgico, em nÃvel central, como mecanismo alternativo para a proteÃÃo contra as convulsÃes no modelo de P400, bem como a participaÃÃo de propriedades antioxidantes diretas ou indiretas dessas drogas, atravÃs da capacidade de modificar a resposta ao estresse oxidativo neuronal. / Levetiracetam (LEV), nova droga antiepilÃptica, apresenta eficÃcia na terapia adicional das convulsÃes e em modelos experimentais. Clonazepam (CNZP) à um benzodiazepÃnico utilizado no tratamento de convulsÃes mioclÃnicas e crises generalizadas. Melatonina (MEL), hormÃnio pineal, demonstra atividade anticonvulsivante em diversos modelos animais. Objetivando investigar novos mecanismos relacionados aos efeitos dessas drogas, foi realizado estudo comparativo, a partir da anÃlise da influÃncia do prÃ-tratamento com LEV, CNZP ou MEL sobre o estresse oxidativo neuronal e sobre a modulaÃÃo de sistemas de neurotransmissÃo (colinÃrgico e dopaminÃrgico) durante as convulsÃes induzidas por pilocarpina (400mg/Kg; P400). Camundongos Swiss, machos, 25-30g receberam LEV, 200 mg/Kg, CNZP, 0,5mg/Kg ou MEL, 25mg/Kg, i.p., (doses escolhidas à partir de curvas dose-resposta) 30min antes de P400. Hipocampo e corpo estriado foram removidos para as anÃlises neuroquÃmicas. Experimentos in vitro, onde homogenatos cerebrais foram incubados com as drogas em estudo (50, 100 ou 200g/mL), tambÃm permitiram analisar alteraÃÃes no estresse oxidativo apÃs a induÃÃo de choque tÃrmico e, ainda, a densidade de receptores muscarÃnicos no hipocampo. Os estudos sobre os efeitos sobre o sistema de neurotransmissores colinÃrgicos demonstraram que o prÃ-tratamento com LEV, CNZP ou MEL causou reduÃÃo nos tremores induzidos por oxotremorina e elevou a atividade da acetilcolinesterase no hipocampo. LEV e CNZP alteraram o binding dos receptores muscarÃnicos hipocampais in vivo, revertendo a downregulation induzida por P400, e ensaios in vitro demostraram alteraÃÃo no binding muscarÃnico hipocampal pela prÃvia incubaÃÃo com LEV, CNZP ou MEL. Os ensaios de binding demonstraram, ainda, a downregulation dos receptores D2 hipocampais nos animais tratados LEV, CNZP ou prÃ-tratados com MEL antes de P400. As anÃlises para investigaÃÃo da atividade antioxidante de LEV e CNZP e do papel da aÃÃo antioxidativa da MEL na proteÃÃo contra as convulsÃes permitiram observar que a associaÃÃo com vitamina E potencializou os efeitos anticonvulsivantes de todas as drogas estudas. A administraÃÃo prÃvia de LEV, CNZP ou MEL, antes de P400, reverteu o aumento nos nÃveis de peroxidaÃÃo lipÃdica e nitrito-nitrato e normalizou a atividade da catalase e os nÃveis fisiolÃgicos do antioxidante glutationa em hipocampo e/ou corpo estriado. Nos experimentos de stress oxidativo in vitro, o aumento da peroxidaÃÃo lÃpÃdica, dos nÃveis de nitrito-nitrato e da atividade da catalase nos homogenatos cerebrais submetidos ao choque tÃrmico, foram alterados de forma significativa pela incubaÃÃo prÃvia com LEV, CNZP ou MEL, onde estas drogas foram capazes de reduzir os nÃveis de MDA, de nitrito-nitrato e, ainda, estabilizar a atividade da catalase, potencializando, assim, a atividade enzimÃtica antioxidante endÃgena e a capacidade de inativaÃÃo de radicais livres. Dessa forma, o estudo sugere uma aÃÃo moduladora, exercida por LEV, CNZP e MEL sobre o funcionamento dos sistemas muscarÃnico e dopaminÃrgico, em nÃvel central, como mecanismo alternativo para a proteÃÃo contra as convulsÃes no modelo de P400, bem como a participaÃÃo de propriedades antioxidantes diretas ou indiretas dessas drogas, atravÃs da capacidade de modificar a resposta ao estresse oxidativo neuronal. / Levetiracetam (LEV), a new antiepileptic drug, shows efficacy in the treatment of additional seizures and in experimental models. Clonazepam (CNZP) is a benzodiazepine used to treat myoclonic seizures and generalized seizures. Melatonin (MEL), the pineal hormone, shows anticonvulsant activity in several animal models. To investigate new mechanisms related to the effects of these drugs, comparative study was conducted, from the analysis of the influence of pretreatment with LEV, CNZP or MEL on the oxidative stress and neuronal modulation of neurotransmitter systems (cholinergic and dopaminergic) during seizures induced by pilocarpine (400mg/Kg; P400). Male Swiss mice, 25-30g received LEV, 200 mg / kg, CNZP, 0.5 mg / kg or MEL, 25mg/kg, ip (doses chosen from the dose-response curves) 30min before P400. Hippocampus and striatum were removed for neurochemical analysis. In vitro experiments, where brain homogenates were incubated with drugs under study (50, 100 ou 200g/mL) also allowed us to analyze changes in oxidative stress after induction of heat shock and also the density of muscarinic receptors in the hippocampus. Studies on the muscarinic modulation demonstrated that pretreatment with LEV, CNZP or MEL resulted in lower oxotremorina induced tremors and increased acetylcholinesterase activity in the hippocampus. LEV and CNZP altered the binding of hippocampal muscarinic receptors in vivo, reversing the P400-induced downregulation and in vitro tests showed changes in hippocampal muscarinic binding by previous incubation with LEV, CNZP or MEL. The binding assays also showed a downregulation of hippocampal D2 receptors in treated animals LEV, CNZP or pretreated with MEL before P400. Analyses to investigate the antioxidant activity of LEV and CNZP and role of antioxidative action of MEL in the protection against seizures propose that the association with vitamin E increased the anticonvulsant effects of all studied drugs. The prior administration of LEV, MEL or CNZP before P400, reversed the increased levels of lipid peroxidation and nitrite-nitrate and normalized the activity of catalase and the physiological levels of the antioxidant glutathione in the hippocampus and / or striatum. According to in vitro experiments, increased lipid peroxidation, levels of nitrite-nitrate and catalase activity in brain homogenates subjected to thermal shock were significantly altered by incubation with LEV, CNZP or MEL, where these drugs were able to reduce the levels of MDA, nitrite-nitrate, and also stabilize the activity of catalase, enhancing thus the endogenous antioxidant enzyme activity and the ability to inactivate free radicals.Thus, the study suggests a modulatory action exerted by LEV, CNZP and MEL on the functioning of muscarinic and dopaminergic systems in the central nervous system as an alternative mechanism to protect against seizures in the model P400, and the participation of direct and indirect antioxidant properties of these drugs, through the ability to modify the neuronal response to oxidative stress. / Levetiracetam (LEV), a new antiepileptic drug, shows efficacy in the treatment of additional seizures and in experimental models. Clonazepam (CNZP) is a benzodiazepine used to treat myoclonic seizures and generalized seizures. Melatonin (MEL), the pineal hormone, shows anticonvulsant activity in several animal models. To investigate new mechanisms related to the effects of these drugs, comparative study was conducted, from the analysis of the influence of pretreatment with LEV, CNZP or MEL on the oxidative stress and neuronal modulation of neurotransmitter systems (cholinergic and dopaminergic) during seizures induced by pilocarpine (400mg/Kg; P400). Male Swiss mice, 25-30g received LEV, 200 mg / kg, CNZP, 0.5 mg / kg or MEL, 25mg/kg, ip (doses chosen from the dose-response curves) 30min before P400. Hippocampus and striatum were removed for neurochemical analysis. In vitro experiments, where brain homogenates were incubated with drugs under study (50, 100 ou 200g/mL) also allowed us to analyze changes in oxidative stress after induction of heat shock and also the density of muscarinic receptors in the hippocampus. Studies on the muscarinic modulation demonstrated that pretreatment with LEV, CNZP or MEL resulted in lower oxotremorina induced tremors and increased acetylcholinesterase activity in the hippocampus. LEV and CNZP altered the binding of hippocampal muscarinic receptors in vivo, reversing the P400-induced downregulation and in vitro tests showed changes in hippocampal muscarinic binding by previous incubation with LEV, CNZP or MEL. The binding assays also showed a downregulation of hippocampal D2 receptors in treated animals LEV, CNZP or pretreated with MEL before P400. Analyses to investigate the antioxidant activity of LEV and CNZP and role of antioxidative action of MEL in the protection against seizures propose that the association with vitamin E increased the anticonvulsant effects of all studied drugs. The prior administration of LEV, MEL or CNZP before P400, reversed the increased levels of lipid peroxidation and nitrite-nitrate and normalized the activity of catalase and the physiological levels of the antioxidant glutathione in the hippocampus and / or striatum. According to in vitro experiments, increased lipid peroxidation, levels of nitrite-nitrate and catalase activity in brain homogenates subjected to thermal shock were significantly altered by incubation with LEV, CNZP or MEL, where these drugs were able to reduce the levels of MDA, nitrite-nitrate, and also stabilize the activity of catalase, enhancing thus the endogenous antioxidant enzyme activity and the ability to inactivate free radicals.Thus, the study suggests a modulatory action exerted by LEV, CNZP and MEL on the functioning of muscarinic and dopaminergic systems in the central nervous system as an alternative mechanism to protect against seizures in the model P400, and the participation of direct and indirect antioxidant properties of these drugs, through the ability to modify the neuronal response to oxidative stress.
60

Comportamento compulsivo à cocaína e as implicações no sistema colinérgico muscarínico / Cocaine compulsive behavior and its consequences in the cholinergic muscarinic system

Spelta, Lidia Emmanuela Wiazowski 25 October 2017 (has links)
A farmacodependência é considerada uma doença crônica e sujeita à recaídas, na qual o indivíduo perde o controle sob a utilização de determinada droga de abuso. Conforme o usuário persiste com o uso da droga, ocorrem alterações anatômicas, fisiológicas e neuroquímicas no sistema nervoso central (SNC), as quais podem culminar no desenvolvimento de um comportamento compulsivo. A neurobiologia deste processo é complexa e envolve mecanismos de plasticidade em diferentes sistemas neurotransmissores. O principal deles é o sistema mesocorticolímbico dopaminérgico, constituído por neurônios da área ventral do tegmento mesencefálico (VTA) que se projetam para o núcleo accumbens (NAc) e ao córtex pré-frontal (CPF), diretamente relacionado aos processos motivação e recompensa. Contudo, o mesmo não é suficiente para elucidar a complexidade da doença, o que levou ao entendimento da presença de outros sistemas neurotransmissores neste processo. Sabe-se que o sistema colinérgico muscarínico está diretamente envolvido em diferentes doenças neuropsiquiátricas, incluindo a farmacodependência. Além disso, os receptores colinérgicos muscarínicos (mAChRs) estão densamente presentes em regiões límbicas, onde acetilcolina e dopamina interagem por neuromodulação. Diante disto, o objetivo deste trabalho foi investigar as possíveis alterações plásticas no sistema colinérgico muscarínico resultantes de tratamentos com cocaína que mimetizaram o consumo compulsivo humano. Para tanto, foram realizados ensaios comportamentais com camundongos Swiss machos adultos em campo aberto, tratados durante um (acute binge paradigm, 30 mg/kg) ou 14 dias (escalating dose binge paradigm, 15 - 30 mg/kg) com cocaína. Os animais receberam 3 injeções intraperitoneais (i.p.) de cocaína com intervalos de 60 minutos, durante os quais a atividade locomotora foi avaliada. Após a análise comportamental, os animais foram eutanasiados por decapitação para a remoção do encéfalo e dissecação do estriado, CPF e hipocampo, regiões cerebrais cruciais para o processo fisiopatológico da farmacodependência. Componentes do sistema dopaminérgico (receptores D1 e D2) e colinérgico muscarínico (M1-M5 mAChRs, ChAT, VAChT e AChE) foram avaliados por Immunoblotting. O sangue dos animais foi coletado para a realização das dosagens de cocaína e benzoeilecgonidina por UPLC-MS/MS. O desempenho locomotor total dos animais tratados com cocaína foi superior ao dos animais controle. O grupo tratado com escalonamento de dose desenvolveu sensibilização comportamental aos efeitos psicoestimulantes da cocaína no segundo dia de tratamento e, a partir dele, a atividade locomotora total manteve a mesma magnitude. Além disso, conforme o aumento da dose, os animais mantiveram um nível de atividade superior ao basal, mesmo após o término do experimento. As análises de Immunoblotting mostraram alterações dopaminérgicas e colinérgicas. No estriado observou-se redução da densidade de D2R após o tratamento de 14 dias e aumento na densidade de M3 mAChR após o tratamento agudo. Já no hipocampo observou-se redução de D1R e aumento de D2R, M1 e M5 mAChR após o tratamento crônico; e um aumento na densidade de M3 mAChR após o tratamento agudo. No CPF, foi evidenciada redução de M3 e de M5 mAChR após o tratamento cônico de 14 dias. Em relação às moléculas colinérgicas, observou-se, após o tratamento crônico, aumento da quantidade de ChAT em todas as estruturas estudadas. Além disso, VAChT mostrou-se aumentado no hipocampo após ambos os tratamentos. As dosagens plasmáticas revelaram a presença de 20,38 ± 3,4 ng/mL de cocaína e 224,6 ± 24,02 ng/mL de benzoilcgonina (BZE) nos animais do grupo agudo e, nos do grupo crônico, 62,26 ± 10,56 ng/mL e 375,1 ± 25,62 ng/mL de cocaína e BZE respectivamente. / Drug addiction is a chronic releapsing disorder characterized by the loss of control in limiting drug intake. As the drug use persists, anatomical, physiological and neurochemical changes occur in the central nervous system (CNS), which may lead to the development of compulsive behaviors. The neurobiology of this process is complex and involves mechanisms of plasticity in different neurotransmitter systems. The main one is the mesocorticolimbic dopaminergic system, composed by neurons from the ventral tegmental area (VTA) that projects to the nucleus accumbens (NAc), which is directly related to motivation and reward processes. However, just dopamine is not enough to elucidate the complexity of the disease, leading to the comprehension of another neurotransmitters system involved. It is known that the cholinergic system is involved in different neuropsychiatric disorders, including drug addiction. Furthermore, cholinergic muscarinic receptors (mAChRs) are densely present in limbic regions, where acetylcholine and dopamine interact by neuromodulation. Considering that, the aim of this study was to evaluate the existence of neuroadaptative changes in the cholinergic muscarinic system induced by cocaine in a compulsive-like behavior model in mice. Swiss-Webster adult male mice received 3 daily injections (i.p) of cocaine or saline, with a 60-min interval among them, either acutely (acute binge paradigm) or for 14 consecutive days (escalating dose binge paradigm). The locomotor activity was monitored in the open field during 60 min, in 5 min bins, after each injection. After behavioral analysis animals were euthanized by decapitation and the brain regions of striatum, hippocampus and prefrontal cortex, involved in the pathophysiology of addiction were dissected. Dopaminergic receptors (D1R and D2R), cholinergic muscarinic receptors (M1-M5 mAChRs), choline acetylytransferase (ChAT), acetylcholine vesicular transporter and acetylcholinesterase (AChE) were quantified by Immunoblotting. Blood samples were collected with heparin and plasma was separated and stored with 2% sodium fluorite at -80ºC for cocaine and benzoilecgonine quantification by UPLC-MS/MS. In the open field, animals treated with cocaine showed an increase in locomotor activity compared to control. Cocaine induced behavioral sensitization, in the escalating dose group on day 2, and after that the locomotor activity had the same magnitude until day 14th. These animals also kept the locomotor activity elevated even after the last injection. Immunobltting shows dopaminergic and cholinergic changes. An increase in M3 was observed in both hippocampus and striatum of animals acutely treated. After 14 days, there was an increase in M1, M5 and D2 and a decrease in D1 in hippocampus. There was also a decrease in D2 in the striatum; and finally, there was a decrease in M5 and M3 in the prefrontal cortex. ChAT densities were higher in all regions after the chronic treatment. Besides that, VAChT were higher in the hippocampus after both acute and chronic treatments. UPLC-MS/MS for cocaine and benzoilecgonine demonstrated the presence of 20,38 ± 3,4 ng/mL of cocaine and 224,6 ± 24,02 ng/mL of BZE in the acute binge group; and, 62,26 ± 10,56 ng/mL and 375,1 ± 25,62 ng/mL of cocaine and BZE, respectively in the escalating dose animals.

Page generated in 0.0606 seconds