• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Analyse einer Ribokinase als neue myogenese-relevante Komponente und erste Hinweise auf eine Beteiligung von Ca2+-abhängigen Faktoren in der Myogenese von Drosophila melanogaster

Griemert, Barbara. Unknown Date (has links)
Univ., Diss., 2010--Marburg.
2

Die Suche nach Faktoren des gerichteten Wachstums von Myotuben in der Embryogenese von Drosophila führt zu vielfältig, einem neuen Replikationsregulator

Staudt, Nicole. Unknown Date (has links)
Universiẗat, Diss., 2002--Marburg.
3

Expression von Myotubularin und seiner Mutanten im bakteriellen System / Expression of myotubularin and its mutations in a bacterial system

Dellinger, Eva January 2007 (has links) (PDF)
Die X-gebundene Myotubuläre Myopathie (XLMTM) ist eine sehr seltene und schwere angeborene Muskelschwäche, die durch Mutationen im MTM 1 Gen verursacht wird. In der histopathologischen Untersuchung ist auffällig, dass die Muskelfasern fetalen Myotuben ähneln. Das Gen MTM 1 wurde auf Xq28 lokalisiert und kodiert für das Protein Myotubularin. Die Myotubularine stellen eine große Familie eukaryotischer Lipid-Phosphatasen und Anti-Phosphatasen dar. Da der direkte Nachweis von Myotubularin in Muskelbiopsien von Patienten aufgrund der sehr niedrigen Expression nicht gelingt, weder durch immunhistochemische Methoden noch im Western-Blot oder durch einen spezifischen Enzymtest, steht ein funktioneller Test für die gefundenen Genmutationen nicht unmittelbar zur Verfügung. In der Arbeit sollte versucht werden, zunächst Wildtyp-Myotubularin im bakteriel-len System zu exprimieren, im Western-Blot nachzuweisen und die Phosphatase-Enzymaktivität in vitro zu messen. Als Substrat für Myotubularin wurde p-Nitrophenolphosphat verwendet. In der Durchfüh-rung des experimentellen Teils zeigten sich verschiedene Probleme, aus denen sich jedoch interessante Schlüsse ziehen liessen. Zum ei-nen konnte der Verdacht bekräftigt werden, dass Myotubularin keine Dual-spezifische Phosphatase ist, wie zunächst angenommen wurde. Problematisch war auch, dass der E.coli M15 Bakterienstamm an-scheindend selbst so viele eigene Phosphatasen produzierte, die das Substrat p-Nitrophenolphosphat dephosphorylierten. Diese Hintergrundgrundaktivität störte die eigentliche Aktivitätsmessung des Myotubularins und machte diese kaum verwertbar. Ebenso zeigte sich, dass das Myotubularin in dem untersuchten bakteriellen System nicht in größeren Mengen exprimiert wurde. Letzendlich ergab dies die Schlussfolgerung, dass zukünftige Untersuchungen berücksichtigen sollten, dass eukaryontische Expressionssysteme sich offensichtlich besser für die Mitglieder der Genfamilie der Myotubularine eigenen und dass Myotubularine Lipidphopshatasen sind mit in vivo sehr spe-zifischen Substraten (Phopshatidyl-Inositolphosphate). Jedes artifizielle Substrat sollte diese natürlichen Strukturen möglichst nachahmen. / X-linked myotubular myopathy ist a very rare and severe muscle diseasse. It is cause by a mutation in the MTM1 gene. The musclefibres have a significant similarity to fetal mytotubes. The gene MTM1 was located on Xq28 und is encoding a protein called myotubularin. The myotubularin family consists of eucaryontic lipid phosphatases and anti-phosphatases. The detection of myotubularin in biopsies ist not possible, neither by immunological methods nor by Western Blot or specific enzyme-testing. The goal was to express myotubularin in a bacterial system, to detect it by western blot and to measure the phosphatase activity in vitro. As a substrate for myotubularin p-nitrophenophosphate was used. Several problems occured during testing, which lead to some interesting conclusions. For one, the suspicion that myotubularin ist no dual-specific phosphatase could be confirmed. Another problem was, that the M 15 e. coli bacteria itself seemed to produce phosphatases, that dephosphorylate p-nitrophenolphosphate. That made screening the activity of myotubularin nearly impossible. Also, myotubularin was not expressed in large amounts in M 15 e-coli cells. In the end it turned out that for further tests, an eukaryontic system should be used for expression, and that myotubularine is a lipid-phosphatase with very specific substrates in vivo. Every artifical substrate should imitate that natural structure als closely as possible.
4

Einfluss von HMGA1-Proteinen auf die Myogenese und Heterochromatinorganisation während der Differenzierung / Influence of HMGA1 proteins on myogenesis and heterochromatin organization during differentiation

Brocher, Jan January 2007 (has links) (PDF)
HMG-Proteine sind nach den Histonen die zweithäufigste Superfamilie nukleärer Proteine. Sie binden an DNA und Nukleosomen und induzieren strukturelle Veränderungen im Chromatin. Sie spielen eine wichtige Rolle in der Dynamik des Chromatins und beeinflussen dadurch DNA-abhängige Prozesse, wie Transkription und Replikation. Proteine der HMGA-Familie sind charakterisiert durch konservierte DNA-Bindungsmotive, den AT-Hooks, welche eine Bindung an AT-reiche DNA-Sequenzen vermitteln und durch einen sauren C-Terminus. HMGA-Proteine sind verstärkt im Heterochromatin konzentriert und stehen in Verbindung mit der Expressionsregulation spezifischer Gene aufgrund der Stabilisierung von Nukleoproteinkomplexen, so genannten Enhanceosomen. HMGA-Proteine spielen des Weiteren eine entscheidende Rolle in verschiedenen Entwicklungsprozessen und bei der Tumorprogression . Um den Einfluss von HMGA1 auf die zelluläre Differenzierung und die Chromatinmodulation zu untersuchen, wurden C2C12 Maus-Myoblastenzellen verwendet. Die Induktion der Myogenese in diesen Zellen geht mit der Herunterregulierung von HMGA1 einher. Durch die Etablierung einer C2C12-Zelllinie, welche ein EGFP-markiertes HMGA1a stabil exprimierte, konnte gezeigt werden, dass eine anhaltende HMGA1-Expression spezifisch die Myogeneseprozess inhibierte, während die Osteogenese davon unbeeinflusst zu bleiben schien. Dieser hemmende Effekt kann durch die HMGA1-abhängige Fehlexpression verschiedener Gene, welche für eine einwandfreie Muskeldifferenzierung nötig sind und in die Zellzyklusregulation eingreifen, erklärt werden. Unter der Verwendung von RNAi konnte gezeigt werden, dass die Herunterregulierung von HMGA1-Proteinen für eine korrekte Genexpression und den Muskeldifferenzierungsprozess notwendig ist. Während der terminalen Differenzierung wird die Umorganisation des Chromatins durch die Fusion der Chromozentren offensichtlich. Fotobleichtechniken, wie „fluorescence recovery after photobleaching“ (FRAP) zeigten, dass HMGA1-Proteine mit dem Methyl-CpG-bindenden Protein 2 (MeCP2), welches eine wichtige Rolle in der Chromozentrenfusion spielt, um DNA-Bindungsstellen konkurriert und dieses vom Chromatin verdrängt. Diese dynamische Konkurrenz zwischen einem anhaltend exprimierten HMGA1 und MeCP2 trägt somit zur Inhibition der differenzierungsabhängigen Modulation des Chromatins während der späten Myogenese bei. Die Untersuchungen in C2A1a-Zellen lieferten weitere Hinweise dafür, dass der wesentlichste Umbau des Chromatins in einem Zeitfenster um den dritten Tag nach Induktion der Myogenese stattfindet, an welchem HMGA1 natürlicherweise nahezu vollständig herunterreguliert sind. In diesem Zeitraum kommt es zur Dissoziation der Chromozentren, zu veränderten Expressionsmustern in bestimmten Genen, zu Modulationen in Histonmodifikationen (H3K4me2, H3K4me3, H3K27me3), zur Replikations-unabhängigen Akkumulation von Histon H3 in den Chromozentren über ungefähr einen Zellzyklus hinweg und zu eine signifikanten Erhöhung der HP1-Dynamik. Durch den Einsatz von Bimolekularer Fluoreszenzkomplementierung (BiFC), die es erlaubt Protein-Protein-Interaktionen in vivo zu visualisieren, konnte gezeigt werden, dass der saure C-Terminus des HMGA mit der Chromodomäne (CD) des HP1 interagiert. Zusätzlich ist für diese Interaktion die korrekte DNA-Bindung des HMGA nötig. FRAP-Messungen mit HP1-EGFP-Fusionsproteinen in Zellen die wildtypisches oder ein mutiertes HMGA koexprimierten, bestätigten diese Daten und wiesen darauf hin, dass die HP1-Verweildauer im Heterochromatin maßgeblich von der Gegenwart eines funktionellen HMGA1 abhängig ist. Des Weiteren zeigten C2C12-Myoblasten, die HMGA1 natürlicherweise exprimieren, eine hohe HP1-Verweildauer, die nach HMGA1-knock down drastisch verringert ist. Umgekehrt ist die HP1-Verweildauer nach einer Herunterregulierung von HMGA1 an Tag 3 der Myogenese gering und steigt durch die Koexpression von HMGA1 auf das in Myoblasten gemessene Niveau an. Zusammengenommen zeigen diese Daten, dass die differenzielle Expression von HMGA1 und ihre Fähigkeit mit HP1 zu interagieren, sowie ihre Konkurrenz mit MeCP2 um DNA-Bindungsstellen einen entscheidende Rolle in der Regulation der Aufrechterhaltung und Plastizität des Heterochromatins während der Differenzierung spielen. Daher ist eine zeitlich festgelegte Herunterregulierung von HMGA1 notwendig, um die Modulation des Chromatins und dadurch den Differenzierungsprozess zu ermöglichen / HMG proteins are an abundant superfamily of nuclear proteins that bind to DNA and nucleosomes and induce structural changes in the chromatin fiber. These proteins play an important role in chromatin dynamics and thereby impact DNA-related processes like transcription and replication. Proteins of the HMGA family are characterized by conserved DNA-binding domains, the AT hooks, which mediate binding to AT-rich DNA, and an acidic c-terminal domain. HMGA proteins concentrate in heterochromatin and are linked to specific gene regulation by stabilizing nucleoprotein complexes called enhanceosomes. Furthermore, HMGA proteins play an important role in several developmental processes and in tumor progression. C2C12 mouse myoblast cells were used to explore the impact of HMGA1 proteins on differentiation and chromatin modulation. After induction of myogenesis HMGA1 proteins revealed a downregulation. By establishing a C2C12 cell line stably expressing an EGFP tagged HMGA1a (C2A1a) it could be shown that sustained HMGA expression inhibited specifically the myogenic process while osteogenesis seemed to be unaffected. This inhibition can be explained by an HMGA1-dependent misexpression of several genes that are required for proper myogenic differentiation and genes involved in cell cycle regulation. Using RNAi techniques it could be demonstrated that downregulation of HMGA1 proteins is required to restore proper gene expression and to enable the myogenic program. During terminal differentiation chromatin remodeling is apparent by fusion of chromocenters. Photobleaching experiments like “fluorescence recovery after photobleaching” (FRAP) revealed that HMGA1 proteins compete with the methyl-CpG-binding protein 2 (MeCP2), which plays an important role during the fusion of chromocenters, for DNA-binding sites. Thereby MeCP2 is displaced from chromatin. This dynamic competition between constitutively expressed HMGA1 and MeCP2 thereby leads to an inhibition of the differentiation dependent modulation of the chromatin during late myogenesis. Studies in C2A1a cells revealed a set of evidences indicating that further major chromatin remodeling occurs around day three after induction when HMGA1 proteins are downregulated. At this time-frame chromocenters dissociate, expression patterns of genes are switching, histone modifications are modulated (H3K4me2, H3K4me3, H3K27me3), histone H3 accumulates in a replication independent mode in chromocenters for approximately one cell cycle, and dynamics of HP1 proteins are significantly increased. Applying bimolecular fluorescence complementation (BiFC) that allows visualization of protein-protein interactions in living cells I could show that the acidic domain of HMGA interacts with the chromodomain (CD) of HP1. In Addition, the proper DNA-binding of HMGA1 is necessary to accomplish a functional interaction between HP1 and HMGA. FRAP measurements of HP1-EGFP in cells coexpressing wild type or mutated HMGAs corroborated theses findings and indicated that the HP1 residence time in heterochromatin strongly depends on the presence of functional HMGA proteins. Furthermore, HP1 residence time is high in C2C12 myoblasts which express HMGA1 but low after HMGA1 knock down. Vice versa, it is low in C2C12 cells at day 3 of differentiation when HMGA proteins are downregulated, but high when HMGA1 proteins are coexpressed. Together, these data indicate that the differential expression of HMGAs and their capacity to interact with HP1 proteins and compete with MeCP2 plays an important role in the regulation of heterochromatin maintenance and plasticity during differentiation. Therefore, the downregulation of HMGA1 proteins is required to allow chromatin remodeling and to enable the differentiation program.
5

Molekularbiologische und histologische Analyse der Muskelentwicklung von Nematostella vectensis

Amon-Hassenzahl, Annette. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--Darmstadt.
6

Funtional Analysis of the Murine Genes, MOCS1 and Sox15 / Analysis of the Murine Genes, MOCS1 and Sox15 / Funktionelle Analyse der Mousgene MOCS1 und Sox15 / Analyse der Mausgene MOCS1 und Sox15

Lee, Heon-Jin 02 July 2003 (has links)
No description available.

Page generated in 0.0754 seconds