• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 20
  • 17
  • 9
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 260
  • 65
  • 63
  • 41
  • 38
  • 37
  • 33
  • 32
  • 29
  • 28
  • 25
  • 25
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Engineering embryonic stem cells for myelin cell therapy

Sadowski, Dorota. January 2009 (has links)
Thesis (M.S.)--Rutgers University, 2009. / "Graduate Program in Physiology and Integrative Biology." Includes bibliographical references (p. 39-42).
42

Eigenschaften humaner T-Zell-Linien mit Spezifität für basisches Myelin-Protein im Hinblick auf Pathogenese und Therapie der Multiplen Sklerose /

Weber, Frank. January 2001 (has links)
Göttingen, Universität, Habilitation, 1998.
43

The Role of TSC in Oligodendrocyte Differentiation and Myelination

Han, Juliette 21 June 2013 (has links)
Tuberous Sclerosis Complex (TSC) is an autosomal dominant syndrome characterized by epilepsy, intellectual disability, and autism. Recent studies have suggested that white matter abnormalities, including hypomyelination, contribute to the cognitive deficits in TSC patients, but the mechanism has remained elusive. I used the neuron-specific Tsc1 knockout mice that display a marked decrease in myelin and show that oligodendrocytes are arrested at immature stages of development in vivo resulting in a reduction in the number of myelinating cells. I established an oligodendrocyte culture system and examined the effect of neuron-conditioned media and found that the Tsc1 mutant phenotype was replicable in vitro using medium collected from Tsc1 knockdown (TSC-KD) neurons, confirming that a secreted signal is responsible for inhibiting differentiation of the oligodendrocytes. I took an unbiased genome-wide approach and identified Connective Tissue Growth Factor (CTGF) as a putative candidate for the secreted signal. I confirmed that CTGF was upregulated in Tsc1 mutant neurons and characterized its spatial and developmental expression pattern in our mouse model. In vitro, CTGF was sufficient to inhibit differentiation of oligodendrocytes. The addition of CTGF neutralizing antibody to the TSC-KD neuronal media was able to reverse the suppression of oligodendrocyte maturation, strongly suggesting that CTGF is a major component of the oligodendrocyte inhibitory signal derived from Tsc mutant neurons. Since TSC mutation affects all cells, I investigated the role of TSC in oligodendrocytes. In response to TSC knockdown, oligodendrocytes demonstrate an upregulation of cellular stress marker. I also found a decrease in myelin protein genes, a finding that offers interesting implications for the role of TSC in hypomyelination. Furthermore, I expanded my research into Zellweger disease, a syndrome that involves TSC in its neuropathological manifestations including white matter deficits, and found that localization of TSC to the peroxisome is a critical factor in neuron development. Together, this body of work developed new approaches in Tuberous Sclerosis research in the brain to investigate a previously under-appreciated aspect of TSC pathology - myelination. I have demonstrated that the TSC pathway has important roles in neuron-oligodendrocyte communication and emphasize the critical importance of neuron-derived signals in the establishment of myelination.
44

Actin turnover regulates mechanical properties of oligodendrocytes and myelin formation

Sanchez Baeza, Paula Veronica 08 July 2015 (has links)
No description available.
45

Myelin water imaging : development at 3.0T, application to the study of multiple sclerosis, and comparison to diffusion tensor imaging

Kolind, Shannon Heather 05 1900 (has links)
T2 relaxation imaging can be used to measure signal from water trapped between myelin bilayers; the ratio of myelin water signal to total water is termed the myelin water fraction (MWF). First, results from multi-component T2 relaxation and diffusion tensor imaging (DTI) were compared for 19 multiple sclerosis (MS) subjects at 1.5 T to better understand how each measure is affected by pathology. In particular, it was determined that the detection of a long-T2 signal within an MS lesion may be indicative of a different underlying pathology than is present in lesions without long-T2 signal. Next, the single-slice T2 relaxation measurement was implemented, refined, and validated at 3.0 T. Scan parameters were varied for phantoms and in-vivo brain, and changes in multi-exponential fit residuals and T2 distribution-derived parameters such as MWF were monitored to determine which scan parameters minimized artifacts. Measurements were compared between 1.5 T and 3.0 T for 10 healthy volunteers. MWF maps were qualitatively similar between field strengths. MWFs were significantly higher at 3.0 T than at 1.5 T, but with a strong correlation between measurements at the different field strengths. Due to long acquisition times, multi-component T2 relaxation has thus far been clinically infeasible. The next study aimed to validate a new 3D multi-component T2 relaxation imaging technique against the 2D single-slice technique most commonly used. Ten healthy volunteers were scanned with both the 2D single-slice and 3D techniques. MWF maps were qualitatively similar between scans. MWF values were highly correlated between the acquisition methods. Although MWF values were generally lower using the 3D technique, they were only significantly so for peripheral brain structures, likely due to increased sensitivity of slab-selective refocusing pulses used for the 3D approach. The 3D T2 relaxation sequence was then applied to the study of MS to take advantage of the increased brain coverage. Thirteen MS subjects and 11 controls underwent T2 relaxation and DTI examinations to produce histograms of MWF and several DTI-derived metrics. MS MWF histograms differed considerably from those of controls, and differences in MS MWF histograms did not mirror differences in DTI histograms relative to matched controls.
46

Myelin water measurement by magnetic resonance imaging in the healthy human spinal cord : reproducibility and changes with age

MacMillan, Erin Leigh 11 1900 (has links)
Multi-echo T2 relaxation measurements of the human spinal cord (SC) reveal a short T2 pool of water believed to arise from water trapped between myelin bilayers, where the proportion of this water to the total water signal is called the myelin water fraction (MWF). In the present study, MWF were measured in the healthy human cervical spine at the C4-C6 vertebral levels in vivo using a 3D modified 32 echo CPMG sequence to acquire axial slices perpendicular to the cord. Volunteers were recruited in two age ranges, under 30 years old and over 50 years old, and a subset of both groups were scanned twice to test reproducibility. Mean MWF in the dorsal and lateral column WM of the group under 30 years of age was 0.29 (0.01) (mean(SE)), which agrees with previously reported MWF values in the cervical spine. The mean absolute difference between two scans was 0.06 or 26%. A negative correlation between WM MWF and age was hinted at in these findings, however more subjects are required to improve statistical power. This study paves the way for the use of 3D myelin water imaging in the cervical spine at 3.0T for the assessment of SC WM pathology.
47

Myelin water measurement by magnetic resonance imaging in the healthy human spinal cord : reproducibility and changes with age

MacMillan, Erin Leigh 11 1900 (has links)
Multi-echo T2 relaxation measurements of the human spinal cord (SC) reveal a short T2 pool of water believed to arise from water trapped between myelin bilayers, where the proportion of this water to the total water signal is called the myelin water fraction (MWF). In the present study, MWF were measured in the healthy human cervical spine at the C4-C6 vertebral levels in vivo using a 3D modified 32 echo CPMG sequence to acquire axial slices perpendicular to the cord. Volunteers were recruited in two age ranges, under 30 years old and over 50 years old, and a subset of both groups were scanned twice to test reproducibility. Mean MWF in the dorsal and lateral column WM of the group under 30 years of age was 0.29 (0.01) (mean(SE)), which agrees with previously reported MWF values in the cervical spine. The mean absolute difference between two scans was 0.06 or 26%. A negative correlation between WM MWF and age was hinted at in these findings, however more subjects are required to improve statistical power. This study paves the way for the use of 3D myelin water imaging in the cervical spine at 3.0T for the assessment of SC WM pathology.
48

PMP22-overexpressing mice as a model for Charcot-Marie-Tooth 1A neuropathy implicate a role of immune-related cells

Kohl, Bianca Dorothea January 2009 (has links)
Würzburg, Univ., Diss., 2009. / Zsfassung in dt. Sprache.
49

Röntgenstrukturanalyse des Myelin-Oligodendrocyte-Glycoprotein und seines Komplexes mit dem (8-18C5)-Fab und Röntgenstrukturanalyse der 12-Oxophytodiensäurereduktasen 1 und 3

Breithaupt, Constanze. Unknown Date (has links)
Techn. Universiẗat, Diss., 2005--München.
50

Struktur-Funktionsanalyse des Myelin-Oligodendrozyten-Glykoproteins durch Gen-Ablation mittels homologer Rekombination

Hoch, Lennart von. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Köln.

Page generated in 0.0328 seconds