• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 12
  • 12
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structure and function of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase

Myllykoski, M. (Matti) 27 May 2013 (has links)
Abstract The myelin sheath is a crucial component of vertebrate nervous systems. Myelin is formed as the plasma membrane of a glial cell is wrapped around a neuronal axon. The presence of myelin enables the fast transmission of neuronal impulses, and degradation or dysfunction of myelin results in severe neurological symptoms. Molecular composition of myelin is unique, and many myelin proteins are not present elsewhere in the body. A myelin enzyme, 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), is found in specific regions within the myelin sheath and is one of the most abundant proteins in the brain. Substrates for CNPase catalytic activity are formed during brain damage. CNPase also interacts with the cytoskeleton and cell membranes, and it is thought to play a role during myelin formation. Mice that lack CNPase suffer from axonal degeneration and die early. The aim of this study was to characterise CNPase structure and function. To this end, a system was first developed to produce the protein for subsequent analyses. The aim was to characterise the catalytic mechanism of CNPase by determining its three-dimensional molecular structure at different stages of the catalytic reaction. The interactions between CNPase and other molecules related to its function would also be characterised. Finally, the structure of the full-length protein would be used to understand of the function of the uncharacterised N-terminal domain. Using X-ray crystallography, the structure of the CNPase catalytic domain was determined in the presence of substrate and product molecules. These data, complemented with analyses of mutationally inactivated enzyme variants, were used to examine the catalytic reaction at the molecular level. The catalytic domain structure was compared to homologous enzymes from diverse organisms. The interaction between CNPase and the calcium-sensing protein calmodulin was characterised. The solution structure of full-length CNPase was determined using small-angle X-ray scattering, and protein sequence databases were utilised to determine CNPase conservation during animal evolution. The results provide novel information on the catalytic activity and overall function of CNPase. Further studies will be necessary to determine its specific role, but it is increasingly clear that CNPase can perform multiple important tasks within the nervous system. / Tiivistelmä Myeliinituppi on tärkeä osa selkärankaisten hermostoa. Myeliiniä muodostuu, kun gliasolun solukalvo kiertyy hermosolun aksonin ympärille. Myeliini mahdollistaa hermoimpulssien nopean välityksen, ja sen tuhoutuminen ja vajaatoiminta aiheuttavat vakavia neurologisia oireita. Myeliinin molekyylikoostumus on ainutlaatuinen, ja monet myeliiniproteiineista eivät esiinny muualla elimistössä. Myeliinissä esiintyvää entsyymiä, 2′,3′-syklisten nukleotidien 3′-fosfodiesteraasia (CNPaasi), esiintyy runsaasti tietyillä myeliinialueilla, ja se on yksi aivojen runsaslukuisimmista proteiineista. Substraatteja CNPaasin katalyyttiselle aktiivisuudelle muodostuu aivovaurion aikana. CNPaasi on myös vuorovaikutuksessa solun tukirangan ja solukalvon kanssa, ja sen uskotaan vaikuttavan myeliinin muodostumiseen. Hiiret, joilta puuttuu CNPaasi, kärsivät aksonien rappeumista ja kuolevat ennenaikaisesti. Tämän tutkimuksen tavoite oli karakterisoida CNPaasin rakennetta ja toimintaa. Tätä tarkoitusta varten ensin kehitettiin menetelmä analysoitavan proteiinin tuottamiseksi. Tavoitteena oli karakterisoida CNPaasin katalyyttinen mekanismi määrittämällä sen kolmiulotteinen molekyylirakenne katalyysireaktion eri vaiheissa. Myös CNPaasin vuorovaikutuksia sen toimintaan liittyvien molekyylien kanssa tutkittiin. Lopuksi kokopitkän proteiinin rakenteen avulla selvitettiin karakterisoimattoman aminoterminaalisen alayksikön toimintaa. CNPaasin katalyyttisen alayksikön rakenne määritettiin käyttäen röntgenkristallografiaa substraatti- ja tuotemolekyylien läsnäollessa. Rakennetta, täydennettynä mutaatioilla inaktivoitujen entsyymimuunnosten analyysillä, käytettiin katalyyttisen reaktion molekyylitason karakterisointiin. Katalyyttisen alayksikön rakennetta verrattiin eri organismeissa esiintyviin homologisiin entsyymeihin. CNPaasin ja kalsiumia sitovan kalmoduliinin vuorovaikutusta karakterisoitiin. Kokopitkän CNPaasin liuosrakenne selvitettiin pienkulmaröntgensironnan avulla, ja CNPaasin sekvenssin säilymistä eläinten evoluution aikana tarkasteltiin proteiinisekvenssitietokantoja käyttämällä. Tulokset antavat uutta tietoa CNPaasin katalyyttisestä aktiivisuudesta ja tämän arvoituksellisen entsyymin toiminnasta. Jatkotutkimukset ovat tarpeen sen täsmällisen roolin selvittämiseksi, mutta on kasvavassa määrin selvää, että CNPaasi pystyy suorittamaan useita tärkeitä tehtäviä hermostossa.
22

Estudio de las vías de señalización intracelular asociadas a las proteínas inhibitorias de la mielina

Seira Oriach, Oscar 10 July 2012 (has links)
Lesioned axons do not regenerate in the adult mammalian central nervous system, owing to the overexpression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 (GSK3beta) and ERK1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: i) cerebellar granule cells and ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Lastly these regenerative effects were corroborated in the lesioned EHP in NgR1 -/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections. On the other hand, and focused in the OMgp, by using recording electrophysiological nano-devices we found that, OMgp has a role in synaptic transmission, since it can induce excitatory postsynaptic potentials (EPSPs) in cultured hippocampal neurons.
23

Konditionale Inaktivierung von Pten in einem neuen Mausmodell für tomaculöse Neuropathien / Conditional inactivation of Pten in a new mouse model of tomaculous neuropathies

Oltrogge, Jan Hendrik 01 February 2017 (has links)
In der Entwicklung des peripheren Nervensystems formen Schwannzellen eine Myelinscheide um Axone mit einem Durchmesser von mehr als 1 μm durch die Bildung multipler kompakter Membranschichten. Voraussetzung einer optimalen Nervenleitgeschwindigkeit ist dabei ein physiologisches Verhältnis der Dicke der Myelinscheide zu dem jeweiligen Axondurchmesser. Eine zentrale Rolle spielt dabei der axonale EGF-like growth factor NRG1 Typ III, der ErbB2/3- Rezeptoren der Schwannzelle bindet. Der PI3K-AKT-Signalweg ist ein bekannter intrazellulärer Effektor des ErbB2/3-Rezeptors und wurde bereits mit dem Prozess der Myelinisierung in Verbindung gebracht. Um die spezifische Funktion des PI3K-AKT-Signalwegs in Schwannzellen zu erforschen, generierten wir mit Hilfe des Cre/LoxP-Systems Mausmutanten, die eine zellspezifische Inaktivierung des Gens Phosphatase and Tensin Homolog (Pten) in myelinisierenden Gliazellen aufweisen (Pten-Mutanten). Der Verlust der Lipidphosphatase PTEN führte zu einer Anreicherung ihres Substrates, des second messenger Phosphatidyl-(3,4,5)-Trisphosphat (PIP3), und damit zu einer gesteigerten Aktivität des PI3K-AKT-Signalwegs in den Schwannzellen der Pten-Mutanten. Wir beobachteten in den Pten-Mutanten eine ektopische Myelinisierung von unmyelinisierten C- Faser-Axonen sowie eine Hypermyelinisierung von Axonen bis 2 μm Durchmesser. Bei Axonen über 2 μm Durchmesser kam es zu Myelinausfaltungen und fokalen Hypermyelinisierungen (Tomacula) anliegend an Regionen des unkompakten Myelins (Paranodien und Schmidt- Lantermann-Inzisuren). Weiterhin bildeten die mutanten Remak-Schwannzellen unkompakte Membranwicklungen um nicht-myelinisierte C-Faser-Axone und um Kollagenfaserbündel aus („Remak-Myelin“). Sowohl in den Regionen unkompakten Myelins als auch in Remak- Schwannzellen konnte eine erhöhte Aktivität des PI3K-AKT-Signalwegs nachgewiesen werden. Vermutlich setzt die Anreicherung von PIP3 mit Überaktivierung des PI3K-AKT-Signalwegs in den mutanten Gliazellen einen zellautonomen Prozess der Umwicklung von Axonen in Gang. Die zusätzliche Bildung von „Remak-Myelin“ um Kollagenfasern, die keine Membranoberfläche besitzen, weist darauf hin, dass dieser Prozess nicht von einer bidirektionalen axo-glialen Kommunikation abzuhängen scheint. Die beobachteten Tomacula und Myelinausfaltungen zeigten Ähnlichkeiten mit Mausmodellen für hereditäre Neuropathien des Menschen, wie HNPP und CMT4B. Wir vermuten, dass PTEN im unkompakten Myelin unkontrolliertes Membranwachstum verhindert und dass eine gestörte Balance von Phosphoinositiden einen Pathomechanismus von tomaculösen Neuropathien darstellt. Somit identifizieren wir den PI3K-AKT-Signalweg als ein mögliches Ziel zukünftiger Therapiekonzepte für hereditäre Neuropathien des Menschen.
24

Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis

Gray, E., Thomas, T. L., Betmouni, S., Scolding, N., Love, S. January 2008 (has links)
No / Recent studies have revealed extensive cortical demyelination in patients with progressive multiple sclerosis (MS). Demyelination in gray matter lesions is associated with activation of microglia. Macrophages and microglia are known to express myeloperoxidase (MPO) and generate reactive oxygen species during myelin phagocytosis in the white matter. In the present study we examined the extent of microglial activation in the cerebral cortex and the relationship of microglial activation and MPO activity to cortical demyelination. Twenty-one cases of neuropathologically confirmed multiple sclerosis, with 34 cortical lesions, were used to assess microglial activation. HLA-DR immunolabeling of activated microglia was significantly higher in demyelinated MS cortex than control cortex and, within the MS cohort, was significantly greater within cortical lesions than in matched non-demyelinated areas of cortex. In homogenates of MS cortex, cortical demyelination was associated with significantly elevated MPO activity. Immunohistochemistry revealed MPO in CD68-positive microglia within cortical plaques, particularly toward the edge of the plaques, but not in microglia in adjacent non-demyelinated cortex. Cortical demyelination in MS is associated with increased activity of MPO, which is expressed by a CD68-positive subset of activated microglia, suggesting that microglial production of reactive oxygen species is likely to be involved in cortical demyelination.

Page generated in 0.0612 seconds