Spelling suggestions: "subject:"myeloid"" "subject:"myeloide""
101 |
JAK-STAT pathway as potential target of acute myeloid leukemiaHan, Ho-chun., 韓浩俊. January 2012 (has links)
Acute myeloid leukemia (AML) is a group of heterogeneous diseases characterized by an abnormal increase in myeloblasts. Despite intensive chemotherapy and allogeneic bone marrow transplantation, the treatment outcome of AML remains unsatisfactory, with a cure rate of only about 30%. Therefore, novel therapeutic strategies targeting the pathogenetic pathways of leukemia initiation and progression are needed. Using intracellular phospho-flow analysis with normal bone marrow as reference, we detected an increase in phosphorylated-STAT5 (pSTAT5) in three leukemic cell lines (K562, KG-1 and ML-2) and 15 primary AML samples. Treatment with specific JAK2 inhibitor TG101209 and JAK2/3 inhibitor AG490 significantly reduced pSTAT5 level and leukemia cell growth associated with an increase in apoptosis and decrease in cellular proliferation. The clonogenic activities of these leukemia cell lines were also significantly reduced. Furthermore, treatment with these inhibitors in K562 and KG-1 also significantly reduced the WNT signaling activity, as enumerated by the TOP/FLASH luciferase assay. In addition, genes associated with oncogenic potential and anti-apoptosis were significantly reduced, consistent with the pathogenetic role of JAK-STAT pathway.
In summary, the present study highlighted the importance of the JAK2-STAT5 signaling pathway in sustaining AML. The results may open up a new avenue whereby new therapeutic strategies targeting AML can be designed. / published_or_final_version / Medicine / Master / Master of Philosophy
|
102 |
Integrative analysis of gene regulation in breast cancer and acute myeloid leukaemiaLim, Weng Khong January 2012 (has links)
No description available.
|
103 |
Role of myeloid-derived suppressor cells in TNBS-induced murine colitisMoreno Martinez, Sem 25 October 2012 (has links)
Myeloid-derived suppressor cells (MDSCs), characterized by the co-expression of CD11b and Gr1, are a heterogeneous population of immature myeloid cells that exhibit strong suppressive functions against T cell responses. In inflammatory conditions like IBD, there is an increase in MDSCs but this is not sufficient to improve intestinal inflammation in IBD. Herein, we investigated the expansion of MDSCs in TNBS-induced acute colitis and whether the adoptive transfer of in vitro generated MDSCs ameliorated intestinal inflammation. We found that CD11b+Gr1+ MDSCs were significantly increased in experimental colitis. Further, this increase correlated to some extent with the severity of the disease. As per our protocol, MDSCs were generated from bone marrow cells co-cultured with hepatic stellate cells (HSCs), an essential cell type to obtain functional MDSCs in vitro. Adoptive transfer of HSC-induced MDSCs improved body weight loss and significantly downregulated inflammatory cytokines TNF, IFN-γ, and IL-17 in colonic tissue. Our results indicate MDSCs are immunoregulatory players in intestinal inflammation and that the adoptive transfer of in vitro generated MDSCs may provide a novel therapeutic approach for inflammatory bowel disease.
|
104 |
Bone Marrow Microenvironment in Acute Myleoid LeukemiaChandran, Priya 09 July 2013 (has links)
Acute myeloid leukemia (AML) often remains refractory to current chemotherapy and transplantation approaches despite many advances in our understanding of mechanisms in leukemogenesis. The bone marrow “niche” or microenvironment, however, may be permissive to leukemia development and studying interactions between the microenvironment and leukemia cells may provide new insight for therapeutic advances. Mesenchymal stem cells (MSCs) are central to the development and maintenance of the bone marrow niche and have been shown to have important functional alterations derived from patients with different hematological disorders. The extent to which MSCs derived from AML patients are altered remains unclear. The aim of this study was to detect changes occurring in MSCs obtained from human bone marrow in patients with AML by comparing their function and gene expression pattern with normal age-matched controls.
MSCs expanded from patients diagnosed with acute leukemia were observed to have heterogeneous morphological characteristics compared to the healthy controls. Immunohistochemistry and flow data confirmed the typical cell surface immunophenotype of CD90+ CD105+ CD73+ CD34- CD45-, although MSCs from two patients with AML revealed reduced surface expression of CD105 and CD90 antigens respectively. Differentiation assays demonstrated the potential of MSCs from AML patients and healthy donors to differentiate into bone, fat and cartilage. However, the ability of MSCs from AML samples to support hematopoietic function of CD34+ progenitors was found to be impaired while the key hematopoietic genes were found to be differentially expressed on AML-MSCs compared to nMSCs.
These studies indicate that there exist differences in the biologic profile of MSCs from AML patients compared to MSCs derived from healthy donors. The results described in the thesis provide a formulation for additional studies that may allow us to identify new targets for improved treatment of AML.
|
105 |
Role of myeloid-derived suppressor cells in TNBS-induced murine colitisMoreno Martinez, Sem 25 October 2012 (has links)
Myeloid-derived suppressor cells (MDSCs), characterized by the co-expression of CD11b and Gr1, are a heterogeneous population of immature myeloid cells that exhibit strong suppressive functions against T cell responses. In inflammatory conditions like IBD, there is an increase in MDSCs but this is not sufficient to improve intestinal inflammation in IBD. Herein, we investigated the expansion of MDSCs in TNBS-induced acute colitis and whether the adoptive transfer of in vitro generated MDSCs ameliorated intestinal inflammation. We found that CD11b+Gr1+ MDSCs were significantly increased in experimental colitis. Further, this increase correlated to some extent with the severity of the disease. As per our protocol, MDSCs were generated from bone marrow cells co-cultured with hepatic stellate cells (HSCs), an essential cell type to obtain functional MDSCs in vitro. Adoptive transfer of HSC-induced MDSCs improved body weight loss and significantly downregulated inflammatory cytokines TNF, IFN-γ, and IL-17 in colonic tissue. Our results indicate MDSCs are immunoregulatory players in intestinal inflammation and that the adoptive transfer of in vitro generated MDSCs may provide a novel therapeutic approach for inflammatory bowel disease.
|
106 |
Analysis of acute mycloid leukaemia cell surface antigens with monoclonal antibodies /Gadd, Stephen J. January 1985 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, 1985. / Includes bibliographical references (leaves 129-145).
|
107 |
Characterization of Leukemic stem cells in acute myeloid LeukemiaCheung, Man-sze, January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Includes bibliographical references (leaf 112-132) Also available in print.
|
108 |
TEL/ABL pathogenesis chronic myelogenous leukemia and small bowel syndrome /Verter, Erol. January 2009 (has links)
Thesis (M.S.)--Brandeis University, 2009. / Title from PDF title page (viewed on May 29, 2009). Includes bibliographical references.
|
109 |
The transcriptional control of aquaporinsNg, Man-ting. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 118-130) Also available in print.
|
110 |
Mechanisms of RRR-[alpha]-tocopheryl succinate- and N-(4-hydroxyphenyl)retinamide-induced apoptosis of human HL-60 myelocytic leukemia and MDA-MB-435 breast cancer cells : a role for TGF-[beta] and C-JUN /Herbert, Brittney-Shea, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 157-188). Available also in a digital version from Dissertation Abstracts.
|
Page generated in 0.0346 seconds