• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 259
  • 94
  • 77
  • 20
  • 14
  • 14
  • 14
  • 12
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 602
  • 402
  • 258
  • 177
  • 133
  • 103
  • 91
  • 73
  • 71
  • 61
  • 60
  • 59
  • 59
  • 55
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Myeloid-Derived Suppressor Cells: Paradoxical Roles in Infection and Immunity

Dai, Jun, El Gazzar, Mohamed, Li, Guang Y., Moorman, Jonathan P., Yao, Zhi Q. 01 January 2015 (has links)
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature suppressor cells that are generated due to aberrant myelopoiesis under pathological conditions. Although MDSCs have been recognized for more than 20 years under the guise of different monikers, these particular populations of myeloid cells gained more attention recently due to their immunosuppressive properties, which halt host immune responses to growing cancers or overwhelming infections. While MDSCs may contribute to immune homeostasis after infection or tissue injury by limiting excessive inflammatory processes, their expansion may be at the expense of pathogen elimination and thus may lead to disease persistence. Therefore, MDSCs may be either damaging or obliging to the host by attenuating, for example, antitumor or anti-infectious immune responses. In this review, we recapitulate the biological and immunological aspects of MDSCs, including their generation, distribution, trafficking and the factors involved in their activation, expansion, suppressive functions, and interplay between MDSCs and regulatory T cells, with a focus on the perspectives of infection and inflammation.
132

MicroRNAs as Potential Regulators of Myeloid-Derived Suppressor Cell Expansion

Elgazzar, Mohamed 01 April 2014 (has links)
Proper development and activation of cells of the myeloid lineage are critical for supporting innate immunity. This myelopoiesis is orchestrated by interdependent interactions between cytokine receptors, transcription factors and, as recently described, microRNAs (miRNAs). miRNAs contribute to normal and dysregulated myelopoiesis. Alterations in myelopoiesis underlie myeloid-derived suppressor cell (MDSC) expansion, a poorly understood heterogeneous population of immature and suppressive myeloid cells that expand in nearly all diseases where inflammation exists. MDSCs associated with inflammation often have immunosuppressive properties, but molecular mechanisms responsible for MDSC expansion are unclear. Emerging data implicate miRNAs in MDSC expansion. This review focuses on miRNAs that contribute to myeloid lineage differentiation and maturation under physiological conditions, and introduces the concept that altered miRNA expression my underlie expansion and accumulation of MDSCs. We divide our miRNAs into those with potential to promote MDSC expansion and two with known direct links to MDSC expansion, miR-223 and miR-494.
133

Origin and maturation of the pulmonary lymphatic endothelium

Norman Jr., Timothy Alfred 14 June 2019 (has links)
The lymphatic vasculature is composed of lymphatic endothelial cells (LECs) that coalesce into a branched hierarchy of small capillaries and larger collecting vessels that regulate interstitial fluids, lipid uptake and immunity. Few studies have focused on pulmonary lymphatic system. To fill these critical knowledge gaps, we interrogated the fetal maturation program of lymphatic endothelium, and we provide evidence that CSF1R-lineage progenitors contribute to LECs in the lung during a temporally defined period in early postnatal life. The pulmonary lymphatic system is required for fluid clearance and air breathing at birth, suggesting a prenatal maturation program. To interrogate this, we developed a cell sorting strategy to enrich pulmonary LECs by their unique cell surface immunophenotype (CD45-, EPCAM-, CD31+, VEGFR3+, PDPN+, LYVE1+) for transcriptional profiling. These experiments highlighted the coordinate down-regulation of genes involved in “cell cycle”, and “mRNA processing” along with coordinate upregulation of “complement/coagulation cascade”, “lipid metabolism”, and “angiogenesis” genes from embryonic day E16.5 to E18.5. The most significantly enriched gene set corresponded to the “interferon-alpha/beta signaling” pathway which was confirmed with qRT-PCR and in-situ hybridization. These data provide the first description of the transcriptional landscape of fetal pulmonary LEC maturation. During development, all LECs are thought to originate from embryonic veins, however multiple studies have suggested a myeloid origin for a subset of LECs. A relationship between myeloid cells and the pulmonary LECs has not been elucidated. Here, we used myeloid-specific inducible CSF1R-CreERtdTomato lineage tracing mice and identified rare, single cells that co-expressed CSF1R- CreERtdTomato and Prox1, the master lymphatic regulator, in the postnatal day 3 lung. This process was temporally restricted to the early postnatal period. Lineage tracing with additional myeloid-Cre mice (CSF1R-iCre and CX3CR1-Cre) also showed contribution to postnatal LECs. To determine the biological significance of CSF1R-derived LECs to postnatal lung biology, we performed conditional Prox1 loss of function experiments. CSF1R-CreER mediated deletion of Prox1 resulted in lymphatic hypoplasia, edematous foci and clotting. These findings suggest that early postnatal CSF1R+ progenitors contribute to the pulmonary lymphatic endothelium and that vascular clotting may result from lymphatic malformation/dysfunction. / 2021-06-14T00:00:00Z
134

Loss of Smad4 From Colorectal Cancer Cells Promotes CCL15 Expression to Recruit CCR1+ Myeloid Cells and Facilitate Liver Metastasis / 大腸癌細胞でのSmad4欠損によりCCL15の発現が誘導され、CCR1+骨髄由来細胞が集積し肝転移が促進される

Itatani, Yoshiro 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18127号 / 医博第3847号 / 新制||医||1001(附属図書館) / 30985 / 京都大学大学院医学研究科医学専攻 / (主査)教授 千葉 勉, 教授 松田 道行, 教授 野田 亮 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
135

Loss of SMAD4 Promotes Lung Metastasis of Colorectal Cancer by Accumulation of CCR1+ Tumor-associated Neutrophils through CCL15-CCR1 Axis / 大腸癌のSMAD4欠損によりケモカインCCL15が分泌され、腫瘍周囲にCCR1陽性腫瘍関連好中球(TAN)が集積し、肺転移が促進する

Yamamoto, Takamasa 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20229号 / 医博第4188号 / 新制||医||1019(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 武藤 学, 教授 原田 浩, 教授 山田 泰広 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
136

Expression of Vascular Endothelial Growth Factor in Ovarian Cancer Inhibits Tumor Immunity through the Accumulation of Myeloid-Derived Suppressor Cells / 卵巣癌における血管内皮増殖因子の発現は、骨髄由来免疫抑制性細胞の浸潤を介して腫瘍免疫を抑制している

Horikawa, Naoki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20253号 / 医博第4212号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 河本 宏, 教授 戸井 雅和, 教授 小川 誠司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
137

Development of a Selective and Stable Reactive Oxygen Species-activated Anti-Acute Myeloid Leukemia Agent and Localizing DNA Aptamer

Earnest, Kaylin G. 02 October 2018 (has links)
No description available.
138

Disease-Modifying Effects of Microglia Depletion and Nuclear Receptor Deletion inMyeloid Cells in Alzheimer's Disease

Casali, Brad Thomas 22 January 2021 (has links)
No description available.
139

Data Driven Approaches for Dissecting Tumor Heterogeneity

Durmaz, Arda 27 January 2023 (has links)
No description available.
140

The role of TLE4 as a tumor suppressor in acute myeloid leukemia and regulator of hematopoietic and bone development

Shin, Thomas H. 06 February 2017 (has links)
The presence of AML1-ETO (RUNX1-CBF2T1), a fusion oncoprotein resulting from a t(8;21) chromosomal translocation, is a necessary but insufficient event in the development of a subset of acute myeloid leukemias (AML). Although AML1-ETO is able to block differentiation and immortalize hematopoietic stem cells, other contributory events are required for cell proliferation and leukemogenesis, suggesting that specific tumor suppressor genes may counteract the leukemic potential of AML1-ETO. In studying del(9q), one of the most common concomitant chromosomal abnormalities with t(8;21), we identified the loss of TLE4 as a key cooperating event in the development of AML1-ETO AML, leading to increased cell proliferation, blocked apoptosis and differentiation, as well as cytarabine resistance in leukemic cells. This suggested TLE4 functions as a tumor suppressor gene in AML.We found these effects are mediated by the loss of TLE4 regulation of a COX-Wnt inflammatory axis. These effects were consequently reversible by Wnt signaling and cyclooxygenase inhibition, pointing towards anti-inflammatory agents as potentially new therapeutic and adjuvant strategies for AML. While studies in Drosophila implicate TLE/Groucho as a key mediator of various signaling pathways, including receptor tyrosine kinase/Ras/MAPK, Notch, Myc, and Wnt pathways, there is surprisingly little known about the role of TLE in mammalian development. Using a Tle4 knockout (T4KO) mouse, we identified previously unknown roles for Tle4 in regulating vertebrate mammalian hematopoietic and bone development. T4KO mice manifest leukocytopenia and defective hematopoietic stem cell populations. Using serial transplantation and stromal co-culture, we find that these hematopoietic deficiencies arise due to both intrinsic dysfunction of hematopoietic stem cells as well as defective extrinsic regulation of hematopoiesis by the stem cell niche. Additionally, T4KO mice are severely runted and exhibit markedly decreased bone mineralization concomitant with defective osteoblast function and decreased mineral apposition rates. Many of the pathways regulated by TLE are aberrant in cancer, which has led to increasing studies connecting TLE with various malignancies, including synovial cell sarcoma and glioblastoma. Our findings have great implications for current understanding of TLE function in not only cancer, but also bone and hematopoietic development.

Page generated in 0.0389 seconds