Spelling suggestions: "subject:"myofilament"" "subject:"myofilaments""
1 |
Integration of Troponin I Phosphorylations to Modulate Cardiac FunctionSalhi, Hussam E., Salhi 10 August 2016 (has links)
No description available.
|
2 |
The Role of the Myofilaments in the Relaxation of Cardiac MyocardiumMonasky, Michelle 30 July 2010 (has links)
No description available.
|
3 |
The Role of Troponin C in the HeartLittle, Sean Carl 29 August 2012 (has links)
No description available.
|
4 |
Mécanismes physiopathologiques précoces impliqués dans différentes cardiomyopathies induites / Early physiopathological mechanisms involved in different induced cardiomyopathiesChakouri, Nourdine 04 April 2018 (has links)
Les stress physiopathologiques cardiaques sont associés dans la plupart des cas à une production d’espèces réactives oxygénées (ROS). Les ROS entrent dans plusieurs mécanismes physiologiques, cependant, des niveaux élevés de production de ROS produisent généralement des changements délétères dans la performance contractile et conduisent à un remodelage cardiaque défavorable. Il est maintenant établit qu’un stress oxydant important entraîne une altération de l'expression et/ou la fonction des protéines sarcomériques contribuant aux dysfonctions contractiles observées dans les diverses pathologies cardiaques. Ce travail de thèse a consisté à étudier l’impact du stress oxydant sur la fonction contractile cardiaque in-vivo, ex-vivo, et in-vitro dans diffèrent modèles de stress physiopathologiques cardiaques. Plus précisément, nous avons étudié le remodelage précoce de la machinerie contractile in-vitro, notamment les modifications post-traductionnelles des protéines sarcomériques dépendantes directement ou indirectement des ROS, mais aussi, la conséquence de ces modifications sur la fonction contractile cardiaque in-vivo et ex-vivo. Pour cela, nous avons généré deux modèles animaux de stress physiopathologiques cardiaques (exercice physique et chimiothérapie) ayants des mécanismes moléculaires différents tout en étant reliés par une perturbation commune : une production importante de ROS. Ainsi, ce travail de thèse s’est intéressé à la compréhension des mécanismes physiopathologiques à l’origine de : i) la dysfonction diastolique résultante d’un exerce physique épuisant, ii) la cardiomyopathie résultante de la prise d’anthracyclines. Dans ces études, nous avons étudié les modifications post-traductionnelles induites par les ROS des protéines sarcomériques (MyBP-C et TnI), ainsi que les conséquences sur la fonction cardiaque in-vivo, ex-vivo, et in-vitro. Ce travail de thèse a permis de montrer l’importance de la voie oxydative dans la régulation/dérégulation de la fonction cardiaque, aussi bien à l’échelle de l’organe qu’à l’échelle de la cellule. Il démontre notamment, que la voie oxydative peut interagir avec la voie adrénergique pour modifier les propriétés contractiles (étude #1). De plus, ce travail a permis de mettre en évidence que la voie oxydative induit des modifications précoces des propriétés contractiles qui sont hétérogènes à travers le ventricule gauche (étude #2). / Cardiac pathophysiological stress is generally associated with reactive oxygen species (ROS) production. ROSs are involved in several physiological mechanisms, however, high levels of ROS production induce deleterious changes in contractile performance and lead to adverse cardiac remodeling. It is now established that significant oxidative stress results in impaired expression and/or function of sarcomeric proteins and contribute to contractile dysfunctions observed in various cardiac pathologies.This work aim to study the oxidative stress impact on cardiac contractile function in-vivo, ex-vivo, and in-vitro, in different models of cardiac pathophysiological stress. Specifically, we studied the in-vitro contractile machinery early remodeling, including post-translational modifications of sarcomeric proteins directly or indirectly related to ROS, and the consequences of these modifications on cardiac contractile function in-vivo and ex-vivo. For this purpose, we used two animal models of cardiac pathophysiological stress (intense physical exercise and chemotherapy) having different molecular mechanisms but connected by an important ROS production.Thus, this thesis work focused on the pathophysiological mechanisms involved in diastolic dysfunction induced by an exhausting physical exercise and the anthracyclines induced cardiomyopathy. In these studies, we investigated ROS-induced post-translational modifications of sarcomeric proteins (MyBP-C and TnI), as well as, the consequences on cardiac function in-vivo, ex-vivo, and in-vitro. This work has shown the oxidative pathway importance in the cardiac function regulation/deregulation. Especially, it demonstrates that the oxidative pathway can interfere with the adrenergic pathway to modify contractile properties (study #1). In addition, this work has shown that the oxidative pathway induces early heterogeneous changes across the left ventricle in contractile properties (study #2).
|
5 |
A Cellular and Molecular Investigation of Dilated Cardiomyopathy (DCM) in DogsSinclair, Elizabeth 11 January 2013 (has links)
We hypothesized that alterations in cardiac myofilaments are associated with hereditary canine DCM. DCM myofilaments demonstrated a reduction in EC50 and a modest decrease in maximum activity compared to non-failing dog samples. Treatment of myofilaments with the calcium sensitizer, bepridil, showed a reduction in EC50. Desmin and tropomyosin phosphorylation was increased in DCM. Desmin protein levels were increased in DCM. Total troponin I phosphorylation was unchanged, but S23/S24 phosphorylation was reduced in DCM. Myofilament-associated PKC-δ and -ζ were elevated in DCM, PKC- ε was modestly reduced, and PKC-α showed no change. These data are the first investigation of cardiac myofilaments in naturally occurring canine DCM, and support the hypothesis that alterations in cardiac myofilaments are associated with DCM. / OVC Pet Trust (operating funds)
|
6 |
Myofibrillens finstruktur i tvärstrimmig skelettmuskulaturEdman, Anne-Christine January 1988 (has links)
The detailed structure of the myofibrillar material in fibres from different muscles has been studied. Specimens have been obtained from human muscles and from different muscles frequently examined in experimental studies. Both light- and electron microscopical techniques have been used. Of central importance has been the method, which makes it possible to prepare ultrathin sections of frozen tissue, i.e. cryo-ult- ramicrotomy. A number of techniques for image analysis have been applied in order to obtain objektive data from the micrographs. In Paper I the present knowledge about muscle fibre structure, cryo-- sectioning and image analysis is summarized and relevant methodological problems are discussed. Paper II describes the detailed structure of the C-zone of the A-band and shows, above all, that structures occur with different repeats along the long axis of the myofibril. Paper III describes the subcellular organization of different fibres in a homogeneous (based on enzyme histochemical mATPase) population, and shows that different structural characteristies can vary independently of each other. Paper IV describes the structural diversity of the myofibrillar M-band, and paper V the diversity of the myofilament fine structure in different fibres. The results show that there is a most sophisticated, and previosly unrealized, structural specialization both within the myofibrils and between myofibrils from different fibres and muscles, even if the fibres are of the same fibre type. The findings suggest that generally used models, showing the structural organization within myofibrils and myofilaments, are oversimplifications. The fibre population is more heterogeneously built up than the common systems for fibre type classification makes one to belive. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1988, härtill 5 uppsatser.</p> / digitalisering@umu
|
7 |
Cardiac Myosin Binding Protein-C phosphorylation Regulates Calcium HomeostasisKumar, Mohit 15 October 2020 (has links)
No description available.
|
8 |
Cardiac Myofilament Calcium Sensitivity in Health and DiseaseVarian, Kenneth Dean 20 August 2008 (has links)
No description available.
|
9 |
Impact of Reperfusion Injury on HeartNitisha, Hiranandani 14 April 2009 (has links)
No description available.
|
10 |
Multiphysics model of a cardiac myocyte: A voltage-clamp studyKrishna, Abhilash 24 July 2013 (has links)
We develop a composite multiphysics model of excitation-contraction coupling for a rat ventricular myocyte under voltage clamp (VC) conditions to: (1) probe mechanisms underlying the response to Ca2+-perturbation; (2) investigate the factors influencing its electromechanical response; and (3) examine its rate-dependent behavior (particularly the force-frequency response (FFR)). Motivation for the study was to pinpoint key control variables influencing calcium-induced calcium-release (CICR) and examine its role in the context of a physiological control system regulating cytosolic Ca2+ concentration and hence the cardiac contractile response.
Our cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments. The model incorporates frequency-dependent calmodulin (CaM) mediated spatially heterogenous interaction of calcineurin (CaN) and Ca2+/calmodulin-dependent protein kinase-II (CaMKII) with their principal targets and accounts for rate-dependent, cyclic adenosine monophosphate (cAMP)-mediated up-regulation. We also incorporate a biophysical model for cardiac contractile mechanics to study the factors influencing force response.
The model reproduces measured VC data published by several laboratories, and generates graded Ca2+-release with high Ca2+ gain by achieving negative feedback control and Ca2+-homeostasis. We examine the dependence of cellular contractile response on: (1) the amount of activator Ca2+ available; (2) the type of mechanical load applied; (3) temperature (22 to 38ºC); and (4) myofilament Ca2+ sensitivity. We demonstrate contraction-relaxation coupling over a wide range of physiological perturbations. Our model reproduces positive peak FFR observed in rat ventricular myocytes and provides quantitative insight into the underlying rate-dependence of CICR.
The role of Ca2+ regulating mechanisms are examined in handling induced Ca2+-perturbations using a rigorous cellular Ca2+ balance. Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on the cellular twitch-response with wide agreement with measured data on all accounts. We identify cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of Ca2+-trigger current (ICaL) as the key mechanisms underlying the aforementioned positive FFR. Our model provides biophysically-based explanations of phenomena associated with CICR and provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility.
|
Page generated in 0.0553 seconds