• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of negative regulators in coordination of the Myxococcus xanthus developmental program

Lee, Bongsoo. Unknown Date (has links)
Univ., Diss., 2009--Marburg.
2

The ParA-like protein AgmE positively regulates cell division in Myxococcus xanthus

Aguiluz Fabian, Kryssia. Unknown Date (has links)
Univ., Diss., 2009--Marburg.
3

CrdA regulates endogenous beta-lactamase activity in Myxococcus xanthus

Li, Di. Kirby, John R. January 2009 (has links)
Thesis supervisor: John R. Kirby. Includes bibliographic references (p. 63-67).
4

Sporulation mutants of Myxococcus xanthus

Cardaman, Richard C. January 1994 (has links)
No description available.
5

CRISPR3 Regulates Exopolysaccharide Production in Myxococcus xanthus

Wallace, Regina A. 10 October 2013 (has links)
Myxococcus xanthus, a model organism for studying development and Type IV pili (T4P), harbors three Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) on its chromosome. CRISPR systems, which function as an adaptive immune system in prokaryotes, are classified into three types based on CRISPR-associated genes. Evidence suggests that these three types mediate immunity slightly differently. M. xanthus CRISPR1 and CRISPR2 are Type I systems while CRISPR3 is a Type III-B system. In a genetic screen, a mariner transposon insertion in the 13th spacer of CRISPR3 (3SP13) was found to restore exopolysaccharide (EPS) production to a pilA mutant. Since the deletion of CRISPR3 failed to suppress a pilA mutation and expression of CRISPR3 from a heterologous promoter led to pilA suppression, it was concluded that the 3SP13 transposon insertion is a gain-of-function mutation. Deletion of the adjacent Repeat Associated Mysterious Proteins (RAMP) genes indicated that they are essential for the 3SP13 transposon insertion to suppress pilA, providing evidence that Type III-B systems may be involved in the regulation of chromosomal genes. We suggest that one of the spacers, once expressed and processed, may inhibit the expression of a negative regulator of EPS production in M. xanthus. / Master of Science
6

Papel de la vitamina B12 en la actividad de una familia de factores transcripcionales con una singular arquitectura de dominios.

Ortiz Guerrero, Juan Manuel 31 May 2013 (has links)
La bacteria Myxococcus xanthus, responde a la luz azul produciendo carotenoides que la protegen del daño fotooxidativo. En oscuridad la transcripción de la mayoría de los genes implicados en la síntesis de estos pigmentos es reprimida por las proteínas CarA y CarH, parálogas y funcionalmente redundantes. Ambas contienen un dominio N-terminal y otro C-terminal de unión al DNA y a cobalaminas respectivamente. Sorprendentemente, CarH, pero no CarA, depende de B12 para llevar a cabo su función represora. En este trabajo se ha demostrado que CarH y su homólogo en Thermus thermophilus (TtCarH) son fotorreceptores que utilizan la adenosilcobalmina (forma de cobalamina) como grupo cromóforo. La luz desmantela la oligomerización de estas proteínas y su unión al DNA inducidas por la adenosilcobalamina, lo que activa la expresión de los genes implicados en la carotenogénesis. Este hallazgo ha sido publicado en la prestigiosa revista PNAS (Ortiz-Guerrero et al. 2011). / The bacteria Myxocccus xanthus responds to light by producing carotenoid, protecting itself against photooxidative damage. In the dark, most of the genes involved in carotenoid synthesis are repressed by the paralogous and functionally redundant proteins CarA and CarH. Both of them contain a DNA-binding N-terminal domain and a cobalamin-binding C-terminal domain. Surprisingly, CarH, but not CarA, repressive depends on B12. In this work we showed that CarH and its homologous in Thermus thermophilus (TtCarH) are photoreceptors in which adenosylcobalamin plays the role of a chromophore. Light dismantles CarH and TtCarH adenosylcobalamine-induced oligomerization and DNA binding, activating structural genes involved in carotenoid. This finding has been reported in the prestigious journal PNAS (Ortiz-Guerrero et al. 2011)
7

The Type IV Pilus Assembly ATPase PilB as a Regulator of Biofilm Formation and an Antivirulence Target

Dye, Keane 02 June 2022 (has links)
Bacterial type IV pili (T4P) are filamentous surface appendages with a variety of functions including motility, surface attachment, and biofilm formation. In many species of bacteria a clear understanding of how the functions of T4P in lifestyle switching are regulated remains to be elucidated. Here, we focus on understanding the regulation of the T4P assembly ATPase PilB. We examined its interactions with the secondary messenger cyclic-di-GMP (cdG). Specifically we investigated how cdG binding regulates PilB functions not only as the assembly ATPase, but also as an EPS signaling molecule in Myxococcus xanthus biofilm regulation. Chapter 2 focuses on the development of a microplate-based biofilm assay for M. xanthus. This new assay allows for the analysis of the M. xanthus submerged biofilms under vegetative conditions in a high throughput format which has been absent in the published literature. M. xanthus biofilm formation tightly correlates with EPS production, suggesting that the assay can be used as a convenient method of examining EPS production. Chapter 3 examines the regulation of M. xanthus PilB (MxPilB) by cdG binding in vivo. We carried out a mutational analysis of the MshEN cdG binding domain in MxPilB. Mutations were created that either diverge with or converge from the MshEN consensus sequence. These two classes of MxPilB variants are expected to either decrease or increase cdG binding affinity, respectively. We examined the motility, EPS production, and piliation phenotypes of these mutants. Our results were consistent with a model where the function of MxPilB is altered in response to cdG binding, and suggesting that PilB responds to different thresholds of cdG concentration. In Chapter 4, we examine the ligand binding to the N-terminal cdG binding domain and C-terminal ATPase domain of Chloracidobacterium thermophilum PilB (CtPilB) in vitro. Our results confirm that these two domains bind to their respective ligands specifically, and demonstrate these domains communicate with each other in response to ligand binding. The results from all of the studies help us to establish a model where cdG binding fine tunes the functions of PilB to regulate the switch of bacteria between the motile and planktonic states. In addition to their roles in motility and biofilm formation, T4P are key virulence factors in many significant human pathogens. Antivirulence chemotherapeutics are considered to be a promising alternative to antibiotics, as they target disease processes rather than bacterial viability. Because PilB is essential for T4P biogenesis, we sought to identify PilB inhibitors for the development of antivirulence therapies. In Chapter 5, we describe the development of the first high throughput screen (HTS), for PilB inhibitors. This assay is uses the reduction of the binding of a fluorescent ATP analog to CtPilB in vitro, leading to the discovery of the plant flavonoid quercetin as a PilB inhibitor. Using M. xanthus as a model a bacterium, quercetin was found to inhibit T4P-dependent motility and T4P assembly in vivo. Builds on this initial success with CtPilB, Chapter 6 describes the development and implementation of a second HTS based on the inhibition of CtPilB as an ATPase. Screening a large chemical library led to the identification of benserazide and levodopa as CtPilB inhibitors. We show that both compounds inhibit T4P assembly in M. xanthus without any detrimental effects on bacterial growth. Furthermore we demonstrate that both levodopa and benserazide inhibit T4P-mediated motility in Acinetobacter nosocomialis, a human pathogen, providing the first evidence that the compounds identified with CtPilB can be effective against a pathogenic bacterium. Both of these studies validate the effectiveness not only of our HTSs, with of CtPilB as a model protein for the identification of PilB inhibitors. / Doctor of Philosophy / Bacteria can be motile or sessile. Motile bacteria can use hair like structures on their surface, called pili, to move in their natural environment, whereas sessile bacteria produce intricate structures attached to solid surfaces known as biofilms. Bacteria are able to switch between being motile and sessile states depending on their environment conditions. However, it isn't clear how this switch is controlled in bacteria that use pili to move. To answer this question, we studied how PilB the protein that assembles pili, might control this switching process. We specifically investigated PilB because it has two known roles. The first is that it can assemble pili, to enable pili-mediated motility. The second is that it can stimulate or promote biofilm formation. This places PilB at the intersection of these two lifestyles, suggesting that this protein may play a key role in deciding whether a bacterium is to be motile or sessile. Another important reason to understand how PilB functions is because pili are used by some antibiotic resistant pathogenic bacteria. Since PilB is essential for the formation of pili, if the actions of PilB could be blocked, bacteria would be unable to make pili. This could stop bacteria from causing disease. By searching for new chemicals which stop PilB from creating pili, we can potentially identify new drugs to treat bacterial infections.
8

Biosynthesis of Nucleotide Sugar Monomers for Exopolysaccharide Production in Myxococcus Xanthus

Cadieux, Christena Linn 24 October 2007 (has links)
Myxococcus xanthus displays social (S) motility, a form of surface motility that is key to the multicellular behaviors of this organism. S motility requires two cellular structures: type IV pili (TFP) and exopolysaccharides (EPS). Previous studies have shown that M. xanthus does not use glucose or any other sugar as a primary carbon source. However, eight monosaccharides, namely glucose, mannose, arabinose, galactose, xylose, rhamnose, N-acetyl-glucosamine, and N-acetyl-mannosamine, are found in M. xanthus EPS. In this study, pathways that M. xanthus could use to produce the activated sugar monomers to form EPS are proposed based on genomic data. Of the eight sugars, pathways for seven were disrupted by mutation and their effects on the EPS-dependent behaviors were analyzed. The results indicate that disruption of the two pathways leading to the production of activated rhamnose (GDP- and TDP-rhamnose) affected fruiting body formation (GDP form only) and dye binding ability (both forms) but not S motility. Disruptions of the xylose, mannose, and glucose pathways caused M. xanthus to lose S motility, fruiting body formation, and dye binding abilities. An interruption in the pathway for galactose production created a mutant with properties similar to a lipopolysaccharide (LPS) deficient strain. This discovery led us to study the phenotypes of all mutant strains for LPS production. The results suggest that all mutants may synthesize defective LPS configurations. Disruption of the UDP-N-acetyl-mannosamine pathway resulted in a wild type phenotype. In addition, it was discovered that interruption of the pathway for N-acetyl-glucosamine production was possible only by supplementing this amino-sugar in the growth medium. In an attempt to determine if other mutants could be recovered by sugar supplementation, it was discovered that the Δpgi mutant can be rescued by glucose supplementation. The Dif chemotaxis-like pathway is known to regulate EPS production in M. xanthus. DifA is the upstream sensor of the pathway. Previous studies had created a NarX-DifA chimeric protein, NafA, that enables the activation of the Dif pathway by nitrate, the signal for NarX. In this study, we constructed a Δpgi difA double mutant containing NafA. This strain was then subjected to various incubations with glucose and/or nitrate to determine whether the point of EPS regulation by the Dif pathway is down- or up-stream of the step catalyzed by Pgi (phosphoglucose isomerase). Preliminary results from this study are inconclusive. / Master of Science
9

Spatial regulation of motility in the social bacterium Myxococcus xanthus / Régulation spatiale de la motilité chez la bactérie sociale Myxococcus xanthus

Zhang, Yong 02 December 2011 (has links)
Tous les organismes, les animaux, les plantes et les microbes, sont composés de cellules polarisées, en affichant un positionnement asymétrique des organites sub-cellulaires ou des structures. Le contrôle de polarité a été étudié chez les eucaryotes pendant une longue période, et a été montré pour être impliqués dans de nombreux processus physiologiques, tels que l'embryogenèse, le cancer métastatique et les maladies dégénératives des neurones. Chez les procaryotes, des études de polarité ne sont apparues récemment avec le développement de la microscopie à fluorescence sensibles. Ces études ont révélé que les cellules procaryotes sont en fait très organisé et une masse croissante de la littérature a montré que les cellules bactériennes également utiliser des radeaux lipidiques, courbure membranaire, la paroi cellulaire et un cytosquelette complexe pour diriger le positionnement spécifique de structures subcellulaires.Petites GTPases de la superfamille Ras sont des éléments réglementaires polarisation répandue chez les eucaryotes. Malgré l'existence depuis longtemps de ces petites GTPases dans les génomes procaryotes, leur fonction a jamais été étudiée. Pendant ce travail de thèse, nous avons trouvé, pour la première fois, qu'une petite GTPase, MglA et de sa protéine apparentée Activation GTPase (GAP) MglB, directe une dynamique axe antéro-postérieur à la motilité directe en forme de tige deltaproteobacterium Myxococcus xanthus. Dans ce processus, MglA s'accumule dans son état lié au GTP au niveau du pôle leader de cellules, en activant les machineries motilité. Ce schéma de localisation est maintenue par MglB, qui localise le pôle opposé, le blocage de l'accumulation MglA à ce pôle à travers son activité GAP. Remarquablement, les deux protéines passer leur localisation synchrone, ce qui correspond à un changement dramatique dans la direction du mouvement cellulaire (inversion). Ce commutateur est réglementé par un système chimiosensoriels-like, Frz. Dans une deuxième partie de ce travail, nous avons identifié un régulateur de protéine de réponse, RomR qui est essentiel pour le regroupement polaire de MglA. Interdépendances complexes entre la localisation RomR, MglA et MglB indiquent que ces protéines pourraient constituer un complexe de polarité dynamique de trois protéines qui reçoit Frz de signalisation pour passer l'axe de polarité. En conclusion, les résultats de ce travail de thèse suggère que M. xanthus intégré un module de polarité eucaryotes-like (MglAB) dans un procaryote spécifique (Frz) réseau de signalisation pour réguler sa motilité. Une telle réglementation est distincte sous forme de petites protéines G des règlements, qui sont généralement couplés à la protéine G récepteurs couplés (GPCR) chez les eucaryotes. Enfin, ce travail ouvre la voie pour comprendre comment la réglementation seule la motilité cellulaire sont intégrés pour générer des comportements commandés multicellulaires donnant naissance à des structures primitives de développement, par exemple, la morphogenèse du corps fructifères. D'autre part, ce travail fournit également un exemple d'analyser les étapes évolutives donnant lieu à des réseaux de signalisation. / All organisms, animals, plants and microbes, are composed of polarized cells, displaying asymmetric positioning of sub-cellular organelles or structures. Polarity control has been studied in eukaryotes for a long time, and has been shown to be involved in many physiological processes, such as embryogenesis, cancer metastasis and neuron degenerative diseases. In prokaryotes, polarity studies only emerged recently with the development of sensitive fluorescent microscopy. These studies revealed that prokaryotic cells are in fact highly organized and a growing body of literature has shown that bacterial cells also use lipid rafts, membrane curvature, the cell wall and a complex cytoskeleton to direct the specific positioning of subcellular structures.Small GTPases of the Ras superfamily are widespread polarization regulatory elements in eukaryotes. Despite the long known existence of such small GTPases in prokaryotic genomes, their function has never been studied. During this thesis work, we found, for the first time, that a small GTPase, MglA and its cognate GTPase Activating Protein (GAP) MglB, direct a dynamic anterior- posterior axis to direct motility of the rod-shaped deltaproteobacterium Myxococcus xanthus. In this process, MglA accumulates in its GTP-bound state at the leading cell pole, activating the motility machineries. This localization pattern is maintained by MglB, which localizes at the opposite pole, blocking MglA accumulation at this pole through its GAP activity. Remarkably, both proteins switch their localization synchronously, which correlates with a dramatic change in the direction of cell movement (reversal). This switch is regulated by a chemosensory-like system, Frz. In a second part of this work, we identified a response regulator protein, RomR which is essential for the polar clustering of MglA. Intricate localization interdependencies between Romr, MglA and MglB indicate that these proteins might constitute a dynamic three-protein polarity complex that receives Frz-signaling to switch the polarity axis. In conclusion, the results from this thesis work suggest that M. xanthus integrated a eukaryotic-like polarity module (MglAB) into a prokaryotic- specific (Frz) signaling network to regulate its motility. Such regulation is distinct form small G- protein regulations, which are generally coupled to G-protein coupled receptors (GPCRs) in eukaryotes. Finally, this work paves the way to understand how single cell motility regulations are integrated to generate ordered multicellular behaviors giving rise to primitive developmental structures, for example fruiting body morphogenesis. On the other hand, this work also provides an example to analyze the evolutionary steps giving rise to signaling networks.
10

Une nouvelle classe de moteurs bactériens impliqués dans le transport de macromolécules à la surface bactérienne : Les machineries de motilité et de sporulation de Myxococcus Xanthus / A novel class of bacterial motors involved in the directional transport of a sugar at the bacterial surface : The machineries of motility and sporulation in Myxococcus xanthus.

Wartel, Morgane 18 December 2013 (has links)
Le mécanisme de la motilité de type gliding chez Myxococcus xanthus est longtemps resté incompris, du fait que ce type de déplacement ne requière aucune organelle extracellulaire. Nous avons démontré que le gliding est énergisée par un canal à protons, composé par les protéines AglRQS. Ce moteur coopère avec le cytosquelette d’actine bactérien pour transporter de manière directionnelle le complexe de l’enveloppe Glt à la surface de la cellule. Ce transport est traduit en motilité car les complexes Glt transportés interagissent avec un polysaccharide de surface qui agit comme une colle et immobilise les complexes Glt transportés contre le substrat.Nous avons également fait l’étonnante découverte que le moteur AglRQS est également essentiel à la sporulation, processus cellulaire durant lequel les cellules s’arrondissent et sont recouvertes d’un épais polysaccharide (le spore coat), qui leur confère une résistance face à des conditions défavorables. Nous avons démontré une interaction directe entre le moteur AglRQS et le complexe de l’enveloppe Nfs, un proche homologue du complexe Glt. Nous avons démontré que le moteur AglRQS transporte le complexe Nfs de manière directionnelle autour de la spore. Le spore coat étant sécrété en différents foci autour de la surface de la spore, son transport par la machinerie Agl-Nfs assure la formation d’une couche de « spore coat » compacte autour de la future spore.Ces résultats démontrent l’existence d’un moteur bactérien impliqué dans le transport directionnel de complexes protéiques associés à des sucres. Ces moteurs modulaires pourraient être adaptés à des fonctions spécifiques, en fonction du complexe avec lequel ils interagissent. / How gliding motility on solid surfaces is achieved in Myxococcus xanthus has long remained enigmatic, mostly because movement does not involve obvious extracellular organelles. Recently, we demonstrated that motility in M. xanthus is driven by a proton channel composed by the AglRQS proteins. This motor cooperates with the bacterial actin cytoskeleton to transport an envelope-spanning Glt motility complexes at the cell surface directionally. Motility is produced as a motility machinery surface tip-bound polysaccharide acts like a glue to immobilize the transported Glt complexes against the substratum.In the course of this study, we also made the surprising discovery that the AglRQS motor is essential not only for motility but also for sporulation, a cellular process during which the cells become surrounded by a thick polysaccharide (the spore coat) that confers resistance during unfavourable conditions. We demonstrated a direct interaction between the AglRQS motor and the Nfs envelope complex, a close homolog of the Glt complex. Transmission electron microscopy, time-lapse microscopy and localization studies, showed that the AglRQS motor rotates the Nfs complex directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by the Agl-Nfs machinery ensures the formation of a compact spore coat layer around the future spore.These results highlight the existence of new class of bacterial motors involved in intracellular and directional transport of sugar-associated complex. These modular motors can be adapted to specific functions based which output complex they interact with.

Page generated in 0.0649 seconds