• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um / Product of two spheres embedded in sphere in codimension one

Penteado, Northon Canevari Leme 22 February 2011 (has links)
James W. Alexander, no artigo[1],mostra que se tivermos um mergulho PL f : \'S POT. 1\' × \'S POT. 1\' \'S POT. 3\', então o fecho de uma das componentes conexas de \'S POT. 3\' f(\'S POT. 1\' × \'S POT. 1\') é homeomorfo a um toro sólido, isto é, homeomorfo a \'S POT. 1\' × \'D POT. 2\'. Este teorema ficou conhecido por Teorema do toro de Alexander. Nesta dissertação, estamos detalhando a demonstração deste teorema feita em[25] que é diferente da demonstração apresentada em [1]. Mais geralmente, para um mergulho diferenciável f : \'S POT. p\' × \'S POT. q\' \'S POT. p + q+1\' , demonstra-se que o fecho de uma das componentes conexasde \'S POT. p +q + 1\' f(\'S POT. p\' × \'S POT. q\') é difeomorfo a \'S POT. p\' × \'D POT. q + 1\' se p q 1 e p + q \'DIFERENTE DE\' 3 ou se p = 2 e q = 1 um dos fechos será homeomorfo a \'S POT. 2\' × \'D POT. 2\' , nesta dissertação estaremos também detalhando estas demonstrações feita em [20] / James W. Alexander shows in[1] that the closure of one of the two connected components of \'S POT. 3\'f( \'S POT. 1 × \'S POT. 1\') is homeomorphic to a solid torus \'S POT. 1\' × \'D POT. 2\' , where f : \'S POT. 1\' ×\' SPOT. 1\' \'S POT. 3\' is a PL embedding. This result became known as Alexanders torus theorem. In this dissertation we are detailing the proof of this theorem made in[25] which is different from the demonstration presented in[1]. More generally, when considering a smooth embeding f : \'S POT. p\' × \'S POT. q\' \' SPOT. p+q+1\' , it is demonstrated that the closure of one of the two connected components \'S POT. p+q+1\' f (\'S POT. p\' × \'S POT. q\' ) is diffeomorphic to \'S POT. p\' × \'D POT. q+1\' if p q 1 and p+q \'DIFFERENT OF\' 3 or if p = 2 and q = 1 one of the closures will be homeomorphic to \'S POT. 2\' × \'D POT. 2\'. In this work we are also detailing the proves made in[20]
2

O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um / Product of two spheres embedded in sphere in codimension one

Northon Canevari Leme Penteado 22 February 2011 (has links)
James W. Alexander, no artigo[1],mostra que se tivermos um mergulho PL f : \'S POT. 1\' × \'S POT. 1\' \'S POT. 3\', então o fecho de uma das componentes conexas de \'S POT. 3\' f(\'S POT. 1\' × \'S POT. 1\') é homeomorfo a um toro sólido, isto é, homeomorfo a \'S POT. 1\' × \'D POT. 2\'. Este teorema ficou conhecido por Teorema do toro de Alexander. Nesta dissertação, estamos detalhando a demonstração deste teorema feita em[25] que é diferente da demonstração apresentada em [1]. Mais geralmente, para um mergulho diferenciável f : \'S POT. p\' × \'S POT. q\' \'S POT. p + q+1\' , demonstra-se que o fecho de uma das componentes conexasde \'S POT. p +q + 1\' f(\'S POT. p\' × \'S POT. q\') é difeomorfo a \'S POT. p\' × \'D POT. q + 1\' se p q 1 e p + q \'DIFERENTE DE\' 3 ou se p = 2 e q = 1 um dos fechos será homeomorfo a \'S POT. 2\' × \'D POT. 2\' , nesta dissertação estaremos também detalhando estas demonstrações feita em [20] / James W. Alexander shows in[1] that the closure of one of the two connected components of \'S POT. 3\'f( \'S POT. 1 × \'S POT. 1\') is homeomorphic to a solid torus \'S POT. 1\' × \'D POT. 2\' , where f : \'S POT. 1\' ×\' SPOT. 1\' \'S POT. 3\' is a PL embedding. This result became known as Alexanders torus theorem. In this dissertation we are detailing the proof of this theorem made in[25] which is different from the demonstration presented in[1]. More generally, when considering a smooth embeding f : \'S POT. p\' × \'S POT. q\' \' SPOT. p+q+1\' , it is demonstrated that the closure of one of the two connected components \'S POT. p+q+1\' f (\'S POT. p\' × \'S POT. q\' ) is diffeomorphic to \'S POT. p\' × \'D POT. q+1\' if p q 1 and p+q \'DIFFERENT OF\' 3 or if p = 2 and q = 1 one of the closures will be homeomorphic to \'S POT. 2\' × \'D POT. 2\'. In this work we are also detailing the proves made in[20]

Page generated in 0.0653 seconds