Spelling suggestions: "subject:"nœud fibre"" "subject:"nœud fibra""
1 |
A generalisation of property "R"Cebanu, Radu Andrei 03 1900 (has links) (PDF)
Nous étudions un problème de chirurgie de Dehn, à savoir la caractérisation des nœuds dans les espaces lenticulaires qui admettent des chirurgies intégrales homéomorphes à S1 x S2. Nous montrons que ces nœuds sont fibrés et qu'ils bordent des surfaces de Seifert planaires. De façon équivalente, les nœuds induits dans S1 x S2 sont isotopes à des tresses. Le principal outil que nous avons utilisé est l'homologie de Heegaard-Floer, un ensemble d'invariants de type théorie de jauge développés par Ozsváth-Szabó à partir de 2000. En outre, nous montrons que ces nœuds sont simples au sens de Floer, donc conjecturalement simples. Compte tenu de cette dernière conjecture, nous avons initié une étude de nœuds simples dans les espaces lenticulaires appropriés et nous avons donné une liste potentiellement complète de tous les nœuds simples avec des chirurgies intégrales S1 x S2. Ces nœuds se révèlent être les nœuds induits dans les espaces lenticulaires obtenues en effectuant une chirurgie de Dehn sur certains nœuds doublement primitifs dans S1 x S2, exactement ceux construits par Baker.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : chirurgie de Dehn, espace lenticulaire, homologie de Heegaard-Floer, nœud fibré.
|
2 |
Les invariants de Links-Gould comme généralisations du polynôme d’Alexander / The Links-Gould invariants as generalizations of the Alexander polynomialKohli, Ben-Michael 23 November 2016 (has links)
On s’intéresse dans cette thèse aux rapports qui existent entre deux invariants d’entrelacs. D’une part l’invariant d’Alexander ∆ qui est l’invariant de nœuds le plus classique, et le plus étudié avec le polynôme de Jones, et d’autre part la famille des invariants de Links-Gould LGn,m qui sont des invariants quantiques dérivés des super algèbres de Hopf Uqgl(n|m). On démontre en particulier un cas de la conjecture de De Wit-Ishii-Links : certaines spécialisa- tions des polynômes de Links-Gould fournissent des puissances du polynôme d’Alexander. Les polynômes LG sont donc des généralisations du polynôme d’Alexander. On conjecture de plus que ces invariants conservent certaines propriétés homologiques bien connues de ∆ permettant d’évaluer le genre des entrelacs et de tester le caractère fibré des nœuds. / In this thesis we focus on the connections that exist between two link invariants: first the Alexander-Conway invariant ∆ that was the first polynomial link invariant to be discovered, and one of the most thoroughly studied since alongside with the Jones polynomial, and on the other hand the family of Links-Gould invariants LGn,m that are quantum link invariants derived from super Hopf algebras Uqgl(n|m). We prove a case of the De Wit-Ishii-Links conjecture: in some cases we can recover powers of the Alexander polynomial as evaluations of the Links-Gould invariants. So the LG polynomials are generalizations of the Alexander invariant. Moreover we give evidence that these invariants should still have some of the most remarkable properties of the Alexander polynomial: they seem to offer a lower bound for the genus of links and a criterion for fiberedness of knots.
|
Page generated in 0.0308 seconds