• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of the nitric oxide synthesis and signaling by posttranslational modifications and N-end rule pathway-mediated proteolysis in Arabidopsis thaliana

Costa Broseta, Álvaro 04 January 2019 (has links)
El óxido nítrico (NO) es una molécula gaseosa altamente reactiva que regula el crecimiento y el desarrollo de las plantas así como sus respuestas de defensa. El NO se produce principalmente a partir de nitrito por las nitrato reductasas (NRs) en balance con las nitrito reductasas (NiRs), y es percibido a través de un mecanismo en el que está involucrada la proteólisis dirigida por la secuencia aminoterminal del grupo VII de los factores de transcripción ERF (ERFVIIs). El NO ejerce especialmente su función señalizadora al causar modificaciones postraduccionales en las proteínas y alterar su función, estructura y/o estabilidad. Por estos medios y en colaboración con distintas rutas de señalización fitohormonales, el NO es capaz de regular un amplio abanico de procesos celulares en plantas, incluyendo aquellos relacionados con la adquisición de tolerancia a la congelación. Utilizando Arabidopsis thaliana como planta modelo, en este trabajo se descubrió que el NO puede regular su propia biosíntesis, puesto que las enzimas NRs y NiRs fueron reguladas por tres factores principales: señalización inducida por nitrato y controlada por la función del factor de transcripción NIN-like protein 7 (NLP7), la proteólisis dirigida por la secuencia aminoterminal, y la degradación mediada por el proteasoma, probablemente ocasionada por modificaciones postraduccionales relacionadas con el NO. Adicionalmente, se descubrió que el factor de transcripción ERFVII RAP2.3 regula negativamente tanto la biosíntesis de NO como las respuestas que desencadena a través de un mecanismo similar a un reóstato en el que están involucradas ramas específicas relacionadas con el NO de las rutas de señalización de jasmonato y ácido abscísico. Por otro lado, una caracterización metabolómica y transcriptómica combinada de plantas mutantes nia1,2noa1-2 deficientes en NO y plantas fumigadas con NO permitió desentrañar una serie de mecanismos que están controlados por NO. En primer lugar, la percepción de NO en los hipocotilos requeriría varias hormonas para ser completada, como fue confirmado por los rastreos de acortamiento de hipocotilo por NO con mutantes relacionados con hormonas y la colección TRANSPLANTA de líneas transgénicas que expresan condicionalmente factores de transcripción de Arabidopsis. En segundo lugar, dosis elevadas de NO causan una reprogramación masiva aunque transitoria de los metabolismos primario y secundario, incluyendo la alteración del estado redox celular, la alteración de la permeabilidad de estructuras lipídicas y el recambio de proteínas y ácidos nucleicos. Por último, se descubrió que el NO previene el desarrollo de la tolerancia a congelación bajo condiciones no estresantes de temperatura, mientras que resulta esencial para la aclimatación a frío desencadenada por bajas temperaturas que conduce a una tolerancia mejorada a congelación. El NO conseguiría esta modulación afinada de la activación de respuestas relacionadas con frío al coordinar la acumulación de diferentes metabolitos y hormonas. En conjunto, este trabajo arroja luz sobre los mecanismos mediante los cuales, al interactuar con varias rutas señalizadoras y metabólicas, el NO puede regular distintos procesos clave de la fisiología vegetal. / L'òxid nítric (NO) és una molècula gasosa altament reactiva que regula el creixement i desenvolupament de les plantes així com les seves respostes de defensa. El NO es produeix principalment a partir de nitrit per les nitrat reductases (NRs) en balanç amb les nitrit reductases (NiRs), i és percebut a traves d'un mecanisme que inclou la proteòlisi dirigida per la seqüència aminoterminal del grup VII dels factors de transcripció ERF (ERFVII). El NO exerceix la seva funció senyalitzadora majoritàriament al provocar modificacions postraduccionals en les proteïnes i alterar la seva funció, estructura i/o estabilitat. Mitjançant aquestes modificacions i en col·laboració amb distintes rutes de senyalització fitohormonals, el NO es capaç de regular un ampli espectre de processos cel·lulars en plantes, inclosos aquells relacionats amb l'adquisició de tolerància a la congelació. Emprant Arabidopsis thaliana com a planta model, en aquest treball es va descobrir que el NO regula la seva pròpia biosíntesi, donat que els enzims NRs i NiRs foren regulades per tres factors principals: senyalització induïda per nitrat i controlada per la funció del factor de transcripció NIN-like protein 7 (NLP7), la proteòlisi dirigida per la seqüència aminoterminal, i la degradació mitjançant el proteasoma, probablement a causa de modificacions postraduccionals relacionades amb el NO. A més, es va descobrir que el factor de transcripció ERFVII RAP2.3 regula negativament tant la biosíntesi de NO com les respostes que desencadena aquest a través d'un mecanisme similar a un reòstat en el que estan involucrades branques específiques de les rutes de senyalització de jasmonat i àcid abscísic relacionades amb el NO. Per altre costat, una caracterització metabolòmica i transcriptòmica combinada de plantes mutants nia1,2noa1-2 deficients en NO i plantes fumigades amb NO va permetre desentranyar una sèrie de mecanismes que estan controlats per NO. En primer lloc, la percepció de NO en els hipocòtils requeriria de varies hormones, com fou confirmat pels rastrejos d'acurtament d'hipocòtil per NO amb mutants relacionats amb hormones i la col·lecció TRANSPLANTA de línies transgèniques d'expressió condicional de factors de transcripció d'Arabidopsis. En segon lloc, dosis elevades de NO causen una reprogramació massiva, encara que transitòria, dels metabolismes primari i secundari, incloent l'alteració de l'estat redox cel·lular, canvis en la permeabilitat de estructures lipídiques i el recanvi de proteïnes i àcids nucleics. Per últim, es va descobrir que el NO prevé el desenvolupament de la tolerància a congelació en condicions no estressants de temperatura, mentre que resulta essencial per a l'aclimatació a fred induïda per baixes temperatures que condueix a una tolerància millorada a congelació. El NO aconseguiria aquesta modulació minuciosa de l'activació de les respostes relacionades amb fred al coordinar l'acumulació de diferents metabòlits i hormones. En conjunt, aquest treball clarifica els mecanismes pels quals el NO pot regular distints processos clau de la fisiologia vegetal al interactuar amb varies rutes senyalitzadores i metabòliques. / Nitric oxide (NO) is a highly reactive gaseous molecule that regulates plant growth and development as well as defense responses. NO is mainly produced from nitrite by nitrate reductases (NRs) in balance with nitrite reductases (NiRs), and is sensed through a mechanism involving the N-end rule pathway-mediated proteolysis of the group VII of ERF transcription factors (ERFVIIs). NO especially exerts its signaling function by triggering post-translational modifications in proteins and altering their function, structure and/or stability. By these means and in collaboration with different phytohormone signaling pathways, NO is capable of regulating a wide array of cell processes in plants, including those related to the acquirement of freezing tolerance. By using Arabidopsis thaliana as model plant, during the development of this work it was found that NO can regulate its own biosynthesis, as NRs and NiR enzymes were regulated by three main factors: nitrate-induced signaling controlled by the function of the NIN-like protein 7 (NLP7) transcription factor, N-end rule proteolytic pathway, and proteasome-mediated degradation, likely triggered by NO-related post-translational modifications. In addition, the ERFVII transcription factor RAP2.3 was found to negatively regulate both the NO biosynthesis and their triggered responses through a rheostat-like mechanism that involves specific NO-related branches of jasmonate and abscisic acid signaling pathways. On the other hand, a combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants and NO-fumigated plants allowed to unravel a number of mechanisms that are controlled by NO. First, NO perception in hypocotyls would require various hormones to be fulfilled as it was confirmed by NO-triggered hypocotyl shortening screenings with hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis transcription factors. Second, high NO doses caused a massive but transient reprogramming of primary and secondary metabolism, including alteration of the cellular redox status, alteration of the permeability of lipidic structures or turnover of proteins and nucleic acids. Lastly, NO was found to prevent the development of freezing tolerance under non-stress temperature conditions, while being essential for the low temperature stress-triggered cold acclimation that leads to enhanced freezing tolerance. NO would achieve this fine-tuned modulation of the activation of the cold-related responses by coordinating the accumulation of different metabolites and hormones. Altogether, this work sheds light on the mechanisms by which, by interacting with various signaling and metabolic pathways, NO can regulate several key processes of plant physiology. / Costa Broseta, Á. (2018). Regulation of the nitric oxide synthesis and signaling by posttranslational modifications and N-end rule pathway-mediated proteolysis in Arabidopsis thaliana [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114825
2

Étude fonctionnelle de la famille des facteurs de transcription ERF-VIIs chez Medicago truncatula : régulateurs clés de l’adaptation au manque d’oxygène / ERF-VII family as key players in hypoxic signaling and adaptation in Medicago truncatula

Rovere, Martina 19 June 2018 (has links)
Les légumineuses sont connues pour leurs capacités à établir une relation symbiotique avec des bactéries du sol fixatrices de l'azote atmosphérique. Cette interaction aboutit à la formation d'un nouvel organe au niveau des racines, la nodosité, au sein duquel le symbiote convertit l'azote atmosphérique (N2) en ammoniac, qui peut être directement consommé par les plantes. A l’intérieur de cette nodosité, la concentration en oxygène (O2) est maintenue à un très faible niveau car la réaction de réduction du N2 par l’enzyme bactérienne nitrogénase est inhibée par des traces d’oxygène. Un mécanisme de perception directe de l'O2 impliquant des membres de la famille des facteurs de transcription « Ethylene Responsive Factors » (ERFs) du groupe VII a récemment été découvert chez Arabidopsis thaliana. Ces facteurs de transcription (FT) possèdent une extrémité N-terminale caractéristique avec un résidu de cystéine à la seconde position. Dans des conditions normales d'O2, les FT sont conduit à la dégradation suivant une voie spécifique du protéasome. En condition de stress hypoxique, les TFs sont stabilisés et peuvent activer l’expression des gènes de réponse à l'hypoxie. Il a été démontré que la présence d’O2 et de NO était nécessaire pour déstabiliser ces protéines, et qu'une réduction de la disponibilité de l'un ou l'autre des gaz est suffisante pour protéger le résidu cystéine N-terminale de l'oxydation. L’objectif de cette thèse a été d'étudier le rôle de la famille ERF-VII dans la perception et l'adaptation au manque d'O2 chez M. truncatula. Des travaux ont aussi été menés pour déterminer l’importance du NO dans le fonctionnement en microoxie de la nodosité. Quatre gènes codant pour des facteurs de transcription de la famille ERF-VII ont été identifiés dans le génome de M. truncatula. La caractérisation de cette famille au niveau transcriptionnel a révélé que seul MtERF-B2.2 était induit par le stress hypoxique et au cours du développement des nodosités. Les trois autres, MtERF-B1.1, MtERF-B1.11 et MtERF-B2.3, sont constitutivement exprimés dans les feuilles, les racines et les nodosités. Pour étudier la stabilité de la protéine MtERF-B2.1, l’orthologue de RAP2.12 principal ERF-VII décrit dans la perception de l’O2 chez Arabidopsis, en fonction de la disponibilité de O2/NO, nous avons réalisé une protéine de fusion entre l’extrémité N-terminale de notre protéine et la protéine rapporteur luciférase. Les résultats obtenus sur des protoplastes d'Arabidopsis montrent l’implication la partie N-terminale de MtERF-B2.1 dans la régulation de la stabilité de la protéine, mais en contradiction avec les résultats obtenus en plantes composites de M. truncatula. La fonction de MtERF-B2.1 et MtERF-B2.11 a également été étudiée dans le cadre de la réponse au stress hypoxique et au cours du processus de nodulation en utilisant une stratégie d'interférence ARN. Des racines transgéniques dérégulées sur l’expression de MtERF-B2.1 et MtERF-B2.11 ont montré un défaut d’activation de plusieurs gènes de réponses à l'hypoxie tels que l’alcool déshydrogénase (ADH1) ou la pyruvate décarboxylase (PDC1). Ces racines transgéniques ARNi-MtERF-B2.1/B2.11 sont également affectées dans l'interaction symbiotique avec une réduction significative de la capacité de nodulation et de l'activité de fixation de l'azote dans les nodules matures. En conclusion, ces travaux révèlent que le mécanisme de détection d'O2 est médié par les ERF-VII dans les nodosités de M. truncatula et que ce mécanisme, associé aux cibles moléculaires régulées en aval, participe au développement de cet organe et au maintien de la capacité de fixatrice de celui-ci. De plus, les résultats indiquent que MtERF-B2.1/B2.11 sont des régulateurs positifs du métabolisme anaérobie et que les gènes associés au cycle hémoglobine-NO sont susceptibles d'activer d'autres voies de génération d'ATP. / Legume crops are known for their capacities to establish a symbiotic relationship with nitrogen fixing soil bacteria. This mutualism culminates in the formation of a new plant organ, the root nodule, in which the symbiont converts atmospheric nitrogen (N2) into ammonia, which can be directly consumed by plants. In nodules, bacterial nitrogenase enzyme is inhibited by traces of oxygen (O2) so different mechanisms maintain this organ at low O2 level. At the same time, nodules need to maintain a high ATP level to support the nitrogenase activity, which is highly energy demanding. Thus, a balance between a tight protection from O2 and an efficient energy production, referred as the “O2 paradox” of N2-fixing legume nodules, has to be reached. In Arabidopsis thaliana, a direct oxygen sensing mechanism has recently been discovered involving members of the ethylene responsive factors (ERFs) group VII. These transcription factors (TFs) possess a characteristic N-terminal amino acid with a cysteine residue at the second position that, under normal O2 conditions, leads to protein degradation following a specific pathway called the N-end rule pathway. Furthermore, it was shown that both O2 and nitric oxide (NO) are required to destabilize the ERFs VII and that a reduction in the availability of either gas is sufficient to stabilize these proteins. Therefore, the goal of this thesis was to investigated the role of ERF-VII family in O2 sensing and adaptation to hypoxia in M. truncatula, model plant for legumes, and to understand how NO interacts with O2 in hypoxic signalization in the microoxic environment that characterizes the nodule. We identified four genes belonging to the ERF-VII TF family in the M. truncatula genome, which present a strong similarity with ERF-VII of Arabidopsis. The characterization of this family at the transcriptional level revealed that only MtERF-B2.2 is up-regulated by hypoxia stress and during nodule development. The three others, MtERF-B1.1, MtERF-B1.11 and MtERF-B2.3 are found constitutively expressed in leaves, roots and nodules. To investigated the protein stability of MtERF-B2.1, the closest orthologous to AtRAP2.12 described as O2-sensors in Arabidopsis, in function of O2/NO availability, we realized a fusion protein with the luciferase reporter protein. Our results on Arabidopsis protoplasts indicated that the N-terminal part of MtERF-B2.1 drives its O2-dependent degradation by the N-end rule pathway. The function of MtERF-B2.1 and MtERF-B2.11 was also investigated both in response to hypoxia stress and during the nodulation process using an RNA interference strategy. Silencing of MtERFB2.1 and MtERF-2.11 showed a significant lower activation of several core hypoxia-responsive genes such as ADH1, PDC1, nsHb1 and AlaAT. These double knock-down transgenic roots were also affected in symbiotic interaction with a significant reduction of the nodulation capacity and nitrogen fixation activity in mature nodules. Overall, the results reveal that O2 sensing mechanism is mediated by ERF-VIIs in M. truncatula roots and nodules and that this mechanism, together with downstream targets, is involved in the organ development and ability to efficiently fix nitrogen. Furthermore, results indicated that MtERF-B2.1/B2.11 are positive regulator of the anaerobic metabolism and the Hb-NO cycle– related genes likely in order to activate alternative ATP generation pathways.

Page generated in 0.0895 seconds