• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2629
  • 658
  • 573
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Fabrication and Characterization of Novel AgNPs Functionalized with Chlorothymol (C@AgNPs)

Sopaj, Lirim 06 May 2022 (has links)
No description available.
582

The identification of novel biomarkers in response to pollutant exposure using proteome profiler arrays

Leach, Lloyd Llewelyn January 2020 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Nanotechnology is a rapidly expanding field with a multitude of practical uses namely textiles, cosmetics, agriculture, and health sciences. The focus, for the purposes of this thesis, will be on carbon dots. The small size and low surface-to-volume ratio result in different physico-chemical behaviour of these particles in comparison to its significantly larger bulk-produced counterparts.
583

Electronic and optical properties of nanomaterials

Schulz, Ferdinand 22 May 2014 (has links)
In this work, the optical and electronic properties of nanomaterials like nanotubes and graphene are investigated using theoretical methods.
584

Toward Growth-Accommodating Polymeric Heart Valves with Graphene-Network Reinforcement

Li, Richard January 2021 (has links)
Graphene is a 2D material well known for its high intrinsic strength of 100 GPa and Young’s modulus of 1 TPa. Because of its 2D nature, the most promising avenues to utilize graphene as a mechanical material include incorporating it as reinforcement in a nanocomposite and creating free-standing foams and aerogels. However, the current techniques are not well-controlled – the reinforcing graphene particles are often discontinuous and randomly dispersed – making it difficult to accurately model and predict the resulting material properties. Here we aim to develop a framework for a new class of nanocomposites reinforced not by discrete nanoparticles, but by a continuous 3D graphene network. These 3D graphene networks were formed by chemical vapor deposition of graphene on periodic metallic microlattices, thereby providing mechanical reinforcement for the lattices. To assist in the lattice design, analytical models were derived for the mechanical properties of core/shell composite lattices and experimentally validated through compression testing of polymer lattices coated with electroless Ni-P. The models and experiments showed good agreement at lower shell thicknesses, while there was divergence at higher thicknesses, likely due to fabrication imperfections. The analytical models were also applied to hollow metallic lattices coated with graphene and compared to experimental data. The results showed that the models are plausible and suggest that graphene has a significant strengthening effect on the microlattices. These studies represent a paradigm shift in the design and fabrication of nanocomposites as one may now precisely prescribe the placement of the reinforcing nanomaterials. On a broader scale, this work also lays the framework for using a 2D material to span 3D space, enabling further exploration of 2D material properties and applications. One potential application area for a graphene-reinforced polymer composite is in prosthetic heart valves. The tissue of a human heart valve leaflet is heavily reinforced with networks of collagen and elastin fibers. One could similarly incorporate a graphene network as reinforcement within the polymeric leaflets of a prosthetic valve. One promising application of polymeric valves is in growth-accommodating implants for pediatric patients. Here we aim to develop a polymeric valved conduit that can be expanded by transcatheter balloon dilation to match a child’s growth. We designed the valve, characterized and selected materials, fabricated the devices and performed benchtop in vitro testing. The first generation of an expandable biostable valved conduit displayed excellent hydrodynamic performance before and after permanent balloon dilation from 22 to 25 mm. The second generation has shown the potential for a greater dilation from 12 to 24 mm. These results demonstrate concept feasibility and motivate further development of a polymeric balloon-expandable device to replace valves in children and avoid reoperations.
585

A Study Of Electrokinetics In Glass Nanopores For Biomolecular Applications

Rana, Ankit January 2018 (has links)
No description available.
586

Synthesis of Carbon Quantum Dots (CQDs) from Coal and ElectrochemicalCharacterization

Rostami, Mohammadreza 23 September 2019 (has links)
No description available.
587

Efficient Optical Modulation and Complete Wavefront Manipulation Using Integrated Photonics

Huang, Heqing January 2023 (has links)
Creating compact, efficient, highly-controllable optical systems has been one of the central goals of optics and photonics research. Integrated photonics provides a powerful platform for manipulating light efficiently and flexibly by guiding light in waveguide circuits on chip. Among the rich family of integrated photonic devices, integrated optical modulators and wavefront generators are two types of components for a great many applications such as optical communications, VR/AR displays, and LiDAR. Current approaches to creating these two types of devices – integrated optical modulators based on waveguides, active wavefront transceivers based on phased arrays, and passive wavefront transceivers based on grating couplers or integrated metasurfaces – suffer from large footprint, high power consumption, low beam quality, and limited controllability. It is desirable to improve the performance of such devices by exploring new device physics and architectures.In this thesis, we propose and investigate several novel approaches for efficient optical modulation and wavefront manipulation using integrated photonics. First, we show that efficient optical phase modulation can be achieved using a micro-resonator operating in the strongly over-coupled regime. Theoretical analysis, simulations, and experimental demonstrations of thermally tuned silicon nitride adiabatic micro-ring resonators operating at the visible and near-infrared wavelengths are conducted. Compared with traditional waveguide-based devices, our resonator-based phase modulators operating at the visible wavelengths showed order-of-magnitude reductions in both device footprint and power consumption. Through a statistical study of the device performance, our adiabatic micro-ring device architecture also showed significantly improved robustness against fabrication variations when compared with the regular micro-ring architecture. Second, we invent a new category of integrated wavefront-shaping devices – leaky-wave metasurfaces – that possess the simple form factor of a grating coupler and the capability of complete wavefront manipulation over all the four optical degrees of freedom: amplitude, phase, polarization ellipticity, and polarization orientation. The working principle of the leaky-wave metasurfaces is based on symmetry-broken photonic crystal slabs supporting quasi-bound states in the continuum (q-BICs). We extended the mechanism of q-BICs excited by free-space planewaves into q-BICs excited by guided waves, and developed a semi-analytical model describing the mapping between the four structural parameters and the four optical parameters of a meta-unit. We experimentally demonstrated multiple leaky-wave metasurface devices that convert light confined in an optical waveguide to an arbitrary optical pattern in free space, realizing custom polarization control, phase-amplitude control, and complete wavefront control, and validating the theory and capability of this platform. Lastly, we explore strategies to optimize the beam quality and efficiency of integrated optical phased arrays. We show that a two-dimensional disordered hyperuniform array layout is promising for generating a radiation pattern with high directionality with performance surpassing uniform arrays, constrained random arrays, and non-redundant arrays. We experimentally demonstrated a passive 32-channel phased array operating at the blue wavelength that showed a high percentage of power in the main beam and suppressed side lobes. We further propose and discuss the use of efficient, resonator-based modulators in phased arrays to improve the system compactness, power efficiency, and scalability. The approaches we investigated in this thesis provide a concrete set of solutions for interfacing free-space optics and integrated photonics. These two platforms have traditionally been studied by investigators from different subfields of optics and have led to commercial products addressing different needs. Our work suggests new ways to create “hybrid” systems consisting of partly integrated photonics and partly free-space optics and utilize the best of both worlds to address many emerging applications such as quantum optics, optogenetics, sensor networks, inter-chip communications, and holographic displays.
588

Silver Halide Nanoparticles as Antimicrobial Agents Against Pseudomonas Aeruginosa

Penman, Nicholas Michael 01 November 2021 (has links)
No description available.
589

Novel gold nanoparticles of drought tolerance enabler GYY4137

Binase, Ntombikayise January 2019 (has links)
>Magister Scientiae - MSc / Different nanoparticles have the ability to improve plant tolerance to drought stress. In the study we report for the first time novel morpholin-4-ium 4-methoxyphenyl (morpholino) phosphinodithioate capped- gold nanoparticles (GYY4137-capped AuNPs). The GYY4137 is a slow releasing hydrogen sulfide (H2S) donor. The GYY4137 AuNPs compared to preliminary experiments of L-serine and L-threonine gold nanoparticles. The nanoparticles were prepared using a simple reflux reduction method in a rolling boil flask at 80 oC. The uncapped GYY4137-AuNPs were relatively stable and had surface plasmon resonance at 562 nm compared to 524 nm and 560 nm of serine-AuNPs and threonine-AuNPs. The nanoparticles were capped with different concentrations (0.1-5 %) of water-soluble poly (ethylene) glycol (PEG) (Mw300) and 0.2% chitosan. The PEG did not fully encapsulate the gold nanoparticles, while the chitosan successfully produced positively charged gold nanoparticles. The formation of chitosan capped GYY4137-AuNPs were verified with UV-Visible spectroscopy (UV-Vis), High Resolution Transmission electron microscopy (HRTEM), Dynamic Light scattering (DLS) and the Zetasizer. The UV-Vis, HRTEM and STEM verified chitosan capped nanoparticles had a surface plasmon resonance peak at 560 nm, with icosahedral, tetrahedron and spherical shaped nanoparticles as the serine-AuNPs that absorb at 560 nm. The agglomerated threonine-AuNPs had a maximum absorbance peak at 524 nm. The chitosan GYY4137-AuNPs had hydrodynamic size of 347.9 nm and zeta potential of + 47 mV, while serine-AuNPs and threonine-AuNPs had hydrodynamic size of 110 nm, zeta potential of -2.9 mV and -230 mV respectively. The polydispersity index (PDI) of the chitosan capped gold nanoparticles was 0.357 compared to 0.406 of both the amino acid gold nanoparticles. The polydispersity index (PDI) showed that the nanoparticles were polydispersed nanoparticles with broad size range as confirmed by the HRTEM and STEM results/ of chitosan capped GYY4137-AuNPs. The sizes of the nanoparticles were 100 nm and 60 nm for GYY4137-AuNPs while the size serine-AuNPs were 60 nm. The gold nanoparticles structural compositions were further confirmed by energy-dispersive X-ray spectrometry (EDX) and Attenuated total reflection infrared spectroscopy (ATR-IR). EDX results proved successful gold nanoparticles synthesis by presence of the element Au in all three nanoparticles and the chitosan GYY4137-AuNPs had 48. 56 wt. % of gold. The FTIR-ATR new bands formation shows that new chemical bonds are formed between the reducing agents, the precursor gold salt solution and capping agents. The shifts showed successful encapsulation with chitosan in GYY4137-AuNPs. The chitosan encapsulation improved surface charge and reactivity of the gold nanoparticles to improve delivery of the hydrogen sulfide donor GYY4137 for later applications to plants.
590

Design and synthesis of a new class of self-cross-linked polymer nanogels

Jiwpanich, Siriporn 01 January 2011 (has links)
The design and engineering of nanoscopic drug delivery vehicles that stably encapsulate lipophilic drug molecules, transport their loaded cargo to specific target sites, and release their payload in a controlled manner are of great interest in therapeutic applications, especially for cancer chemotherapy. This dissertation focuses on chemically cross-linked, water-soluble polymer nanoparticles, termed nanogels, which constitute a promising scaffold and offer the potential to circumvent encapsulation stability issues. A facile synthetic method for a new class of self-cross-linked polymer nanogels, synthesized by an intra/intermolecular disulfide cross-linking reaction in aqueous media, is described here. This simple emulsion-free method affords noncovalent lipophilic guest encapsulation and surface functionalization that may allow for targeted delivery. The encapsulation stability of lipophilic molecules sequestered within these nanoscopic containers is evaluated by a fluorescent resonance energy transfer (FRET) based method developed by our research group. We demonstrate that the encapsulation stability of noncovalently encapsulated guest molecules in disulfide cross-linked polymer nanogels can be tuned and that guest release can be achieved in response to a biologically relevant stimulus (GSH). In addition, varied hydrophobicity in the self-cross-linked nanogels affects the lipophilic loading capacity and encapsulation stability. We reveal that optimal loading capacity is limited by encapsulation stability, where over-loading of lipophilic molecules in the nanoscopic containers may cause undesirable leakage and severely compromise the viability of such systems for drug delivery and other biological applications.

Page generated in 0.0342 seconds