• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 31
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 46
  • 31
  • 19
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Anisotropic Thermal Physics in Suspended Black Phosphorus Thin Films

van den Akker, Anno 31 August 2018 (has links)
No description available.
32

Reducing Subthreshold Leakage Power Through Hybrid MOSFET-NEMS Power Gating

Kindel, David Garret 01 September 2016 (has links)
Modern devices such as smartphones and smartwatches spend a large amount of their life idle, waiting for external events. During this time, they are expending energy, using up battery life. Increasing power consumption is a rising concern to users and researchers alike. Power gating, turning off a blocks of hardware when idle, reduces static power consumption. The Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) currently employed in processors leak current. Even in power gated circuits, MOSFET power gating may only save between 60-80% of power. A different type of switch, a Nanoelectromechanical Systems (NEMS) switch, presents an air gap between the source and drain while in the off state, eliminating subthreshold leakage current. The NEMS switch is slower to operate and only has a finite number of switching before breaking. They should be switched with caution. Proposed in this thesis is a hybrid power gating model wherein a MOSFET is placed in series with a NEMS switch. Power gating the Floating Point Unit (FPU) of a processor is studied through the use of modern open source computer architecture simulators. Each switch type is used to model power gating to observe energy savings and performance costs. The hybrid power gating model is more flexible across a variety of applications. Energy savings are comparable to single NEMS switch power gating for applications with low FPU activity. Any performance loss remains low, matching that of MOSFETs. Processor electrical costs are heavily reduced while devices remain operating at a near-optimal speed. / Master of Science
33

Étude des micro/nano sondes pour la Résonance Magnétique Nucléaire (RMN) / Investigation of micro/nano probes for Nuclear Magnetic Resonance (NMR)

Akel, Mohamad 17 December 2013 (has links)
Dans ce travail, nous exposons une méthode basée sur la détection localisée en couplage capacitif de la composante électrique du signal RMN via des micro/nano sondes spécifiquement développées. Dans la première étape de ce travail nous avons utilisé des NEMS à base de nanotube de carbone pour réaliser une détection du signal RMN à l'échelle nanométrique. En effet, grâce à un couplage électromécanique, nous avons caractérisé ces systèmes en émission de champ, déterminé expérimentalement leur fréquence de résonance et montré qu'ils sont capables de détecter un signal radiofréquence. Pour utiliser ces dispositifs en RMN, l'adaptation du champ statique B0 de l'aimant pour atteindre la valeur de la fréquence de Larmor d'un atome est nécessaire. L'excitation locale autour de ces systèmes permettra une caractérisation complète et fiable. Pour mettre en place cette excitation localisée, nous avons choisi, dans la deuxième étape de cette thèse, une sonde locale de champ électromagnétique à l'échelle micrométrique. D'abord, nous présentons des simulations autour de la microsonde, décrivant la propagation des champs électrique et magnétique injectée par la microsonde. Nous avons caractérisé la microsonde en mode collection. Nous montrons une décroissance de l'intensité du signal RMN, en fonction de la distance. Nous avons observé et modélisé démontrant ainsi que La microsonde est capable de détecter localement un signal RMN tandis que la bobine capte de façon globale. Nous présentons les premières expériences de l'utilisation de la microsonde en mode émission. Ces mesures nous fournissent un modèle qui décrit une excitation inhomogène, dûe à l'émission locale de la puissance (décroissance exponentielle de la puissance), proche de la microsonde. Une distribution des angles de basculement est répartie d'une façon inhomogène induisant une distribution des intensités du signal RMN autour de la microsonde. À la fin de cette thèse, nous avons réalisé deux expériences comme applications directes suite des études sur la caractérisation de la microsonde. La première consiste à imager un volume d'eau placé dans un bain d'huile de silicone. L'image est obtenue en déplaçant mécaniquement la microsonde et en réalisant pour chaque point une mesure de spectroscopie localisée. Dans la deuxième expérience, la microsonde est utilisée pour injecter dans ce volume d'eau des impulsions électromagnétiques et détecte à la suite le signal RMN. Notre étude sur la caractérisation de l'émission locale par une microsonde et la détection du signal radiofréquence par un NEMS à base de NTC, nous permet de proposer un nouveau type de dispositifs capable de détecter un signal RMN. / In this work, we explain our method based on the detection localized capacitive coupling of the electric component of the NMR signal via micro/nano probes specifically developeds. In the first stage of this work we use NEMS based on carbon nanotube to achieve a detection of the NMR signal at the nanoscale. Because of an electromechanical coupling, we characterize these systems in field emission, and we determine experimentally their resonance frequency and shown that they are able to detect a radio signal. To use these devices in NMR, it is necessary to adapt the value of the static field B0 of the magnet to reach the value of the Larmor frequency. We found that a local excitement around these systems gives them a reliable characterization, to avoid disrupting the parasite measurements. To implement this localized excitation, we choose a micro-probe (coaxial cable). First, we presente simulations, describing the propagation of electric and magnetic fields transmitted by the microprobe. After we characterize in collection mode the microprobe. This study shows us a decrease of the NMR signal as a function as distance. This proves that the microprobe is able to detect an NMR signal in near field, while the coil picks up globally. We characterize the microprobe in the transmit mode . These measurements provide us with a model that describes an inhomogeneous excitation of nuclei, due to the emission of power in vicinity of the microprobe. An inhomogeneous distribution of tilt angles induces an inhomogeneous distribution of the NMR signal around the microprobe. At the end of this thesis, we conducte two applications such as direct studies on the characterization of the microprobe. The first consist to image a small volume of water placed in silicone oil sample. The image obtained by mechanically moving of the microprobe and making a localized spectroscopy. In the second experiment, the microprobe injected into this volume and detects after the NMR signal. Finally, the characterization in transmit mode of the microprobe allows us to better understand the phenomenon of the trasmission of electromagnetic waves to excite the spins of the nuclei in vicinity of the NEMS based on CNT. The latter being used as NMR probe at the nanoscale, to detect a NMR signal.
34

Architecture système et conception électronique de réseaux de capteurs de masse à partir de micro et nanorésonateurs. / System Architecture and Circuit Design for Micro and Nanoresonators-Based Mass Sensing Arrays

Arndt, Grégory 12 December 2011 (has links)
Le sujet de thèse porte sur des micro/nanorésonateurs ainsi que leurs électroniques de lecture. Les composants mécaniques sont utilisés pour mesurer des masses inférieures à l'attogramme (10-18 g) ou de très faibles concentrations de gaz. Ces composants peuvent ensuite être mis en réseau afin de réaliser des spectromètres de masse ou des détecteurs de gaz. Afin d'atteindre les résolutions nécessaires, il a été choisi d'utiliser une détection harmonique de résonance détectant les variations de la fréquence de résonance d'une nanostructure mécanique. Les dimensions du résonateur sont réduites afin d'augmenter sensibilité en masse, cependant le niveau du signal électrique en sortie du composant est également réduit. Ce faible signal nécessite donc de concevoir de nouvelles transductions électromécaniques ainsi que des architectures électroniques qui minimisent le bruit, les couplages parasites et qui peuvent être mise en réseau. / The PhD project focuses on micro or nanomechanical resonators and their surrounding electronics environment. Mechanical components are employed to sense masses in the attogram range (10−18 g) or extremely low gas concentrations. The components can then be implemented in arrays in order to construct cutting-edge mass spectrometers or gas chromatographs. To reach the necessary resolutions, a harmonic detection of resonance technique is employed that measures the shift of the resonant frequency of a tiny mechanical structure due to an added mass or a gas adsorption. The need of shrinking the resonator's dimensions to enhance the sensitivity also reduces the signal delivered by the component. The resonator low output signal requires employing new electromechanical resonator topologies and electronic architectures that minimize the noise, the parasitic couplings and that can be implemented in arrays.
35

System architecture and circuit design for micro and nanoresonators-based mass sensing arrays / Architecture système et conception électronique de réseaux de capteurs de masse à partir de micro et nanorésonateurs

Arndt, Grégory 12 December 2011 (has links)
Le sujet de thèse porte sur des micro/nanorésonateurs ainsi que leurs électroniques de lecture. Les composants mécaniques sont utilisés pour mesurer des masses inférieures à l'attogramme (10-18 g) ou de très faibles concentrations de gaz. Ces composants peuvent ensuite être mis en réseau afin de réaliser des spectromètres de masse ou des détecteurs de gaz. Afin d'atteindre les résolutions nécessaires, il a été choisi d'utiliser une détection harmonique de résonance détectant les variations de la fréquence de résonance d'une nanostructure mécanique. Les dimensions du résonateur sont réduites afin d'augmenter sensibilité en masse, cependant le niveau du signal électrique en sortie du composant est également réduit. Ce faible signal nécessite donc de concevoir de nouvelles transductions électromécaniques ainsi que des architectures électroniques qui minimisent le bruit, les couplages parasites et qui peuvent être mise en réseau. / The PhD project focuses on micro or nanomechanical resonators and their surrounding electronics environment. Mechanical components are employed to sense masses in the attogram range (10−18 g) or extremely low gas concentrations. The components can then be implemented in arrays in order to construct cutting-edge mass spectrometers or gas chromatographs. To reach the necessary resolutions, a harmonic detection of resonance technique is employed that measures the shift of the resonant frequency of a tiny mechanical structure due to an added mass or a gas adsorption. The need of shrinking the resonator's dimensions to enhance the sensitivity also reduces the signal delivered by the component. The resonator low output signal requires employing new electromechanical resonator topologies and electronic architectures that minimize the noise, the parasitic couplings and that can be implemented in arrays.
36

Technologie de fabrication et analyse de fonctionnement d'un système multi-physique de détection de masse à base de NEMS co-intégrés CMOS / Technology development and analysis of a multiphysic system based on NEMS co-integrated with CMOS for mass detection application

Philippe, Julien 10 December 2014 (has links)
Ces dernières décennies ont vu l'émergence des microsystèmes électromécaniques (MEMS) grâce notamment aux techniques de fabrication employées dans l'élaboration des transistors. L'utilisation de différentes propriétés physiques (électroniques, mécaniques, optiques par exemple) a permis la construction d'un large panel de capteurs miniaturisés. Résultant de la miniaturisation sub-micrométrique des MEMS, les nanosystèmes électromécaniques (NEMS) constituent un tout nouveau type d'objet permettant d'adresser des applications nécessitant un très haut niveau de sensibilité et de résolution, comme la détection de gaz, la spectrométrie de masse ou la reconnaissance de molécules faisant traditionnellement appel à des machines très volumineuses. L'utilisation de ces NEMS requiert cependant un circuit électronique CMOS afin de lire et d'exploiter le signal en sortie de résonateur et servant également à la mise en place d'une boucle oscillante (boucle à verrouillage de phase ou boucle auto oscillante par exemple), architecture idéale pour la détection de masse en temps réel. L'intégration du circuit CMOS avec les résonateurs NEMS constitue un aspect critique quant à la fabrication de capteurs de haute performance. La solution optimale consiste à intégrer de manière monolithique ces deux parties sur la même puce, permettant ainsi de réduire la dimension du capteur et d'améliorer la transmission du signal électrique entre les résonateurs et le circuit CMOS. Cette thèse propose dans un premier temps d'analyser l'intérêt de cette co-intégration du point de vue électrique. Dans un second temps, cette thèse portera sur le développement d'une approche originale visant à co-intégrer de manière monolithique les nano résonateurs au-dessus du circuit CMOS et des interconnexions. La dernière partie portera sur le design d'un détecteur de masse composé d'un réseau compact de NEMS co-intégré CMOS. / During these last decades, Very Large Scale Integration (VLSI) techniques, well developed for transistors, have been used for the Micro ElectroMechanical Systems (MEMS) devices. Thanks to the combination of different physical properties (such as electronic, mechanical, optical etc.) the fabrication of various kinds of miniaturized sensors has been made possible. The sub-µm downscaling of MEMS has allowed the emergence of a new kind of devices called NEMS (for Nano ElectroMechanical Systems) and the possible use of the electromechanical systems in specific applications in which a high level of sensitivity and resolution is necessary, such as gas sensing, mass spectrometry and molecules recognition, to replace traditional bulky machines. Nevertheless, the use of these NEMS requires a CMOS electronic to enhance NEMS resonators readout and to implement closed-loop oscillators (e.g. phase-locked loop or self-oscillating loop) that provide real-time mass measurements. The integration of the electronic circuit with the resonators is a critical aspect for the fabrication of high performance sensors. The best way consists in monolithically processing these two parts on the same die allowing a size reduction of the sensor and an optimal signal transmission between the NEMS resonators and the CMOS circuit. In a first time, this thesis proposes to analyze the interest of this co integration from an electrical point of view. In a second time, this thesis deals with the development of a 3D co integration in which the nano resonators are fabricated above the CMOS circuit and the interconnections. The final part is focused on the layout design considerations for the implementation of a compact mass sensor based on a NEMS array co integrated with a CMOS.
37

Étude des potentialités de la transduction diélectrique de haute permittivité pour les résonateurs NEMS et MEMS / Study of high-K dielectric transduction potentialities for MEMS and NEMS resonators

Fuinel, Cécile 21 September 2018 (has links)
L'essor du marché des MicroSystèmes ElectroMécaniques (MEMS : MicroElectroMechanial Systems) durant les deux dernières décennies s'est accompagné d'efforts de recherche soutenus pour élargir leurs champs d'application. Employés comme capteurs gravimétriques, des microstructures vibrant à la résonance permettent une détection ultrasensible pouvant aller jusqu'à la masse d'un seul proton pour les plus ultimes d'entre elles. Les capteurs MEMS gravimétriques fonctionnalisés apparaissent alors comme une alternative sans marquage aux technologies existantes de détection d'analytes chimiques et biologiques. Leur résolution est exacerbée par la réduction en taille, et un des principaux enjeux au développement de tels capteurs miniaturisés provient de la capacité à réaliser des moyens de transduction électromécanique - actionnement et détection électriques du mouvement mécanique - robustes et intégrés. Ces travaux de thèse présentent l'étude de la transduction diélectrique appliquée à la mise en vibration de microleviers et son intégration dans le cadre d'un procédé de fabrication collective sur silicium. L'efficacité de ce moyen de transduction est fortement liée à l'épaisseur et à la permittivité de la couche diélectrique employée et tire avantageusement partie de l'utilisation de matériaux à haute permittivité (" High-K ") en films d'épaisseur nanométrique. Dans les travaux présentés, trois matériaux diélectriques ont été étudiés : le nitrure de silicium faiblement contraint, l'alumine et l'oxyde d'hafnium. Ils ont été intégrés comme couche d'actionnement sur des microleviers de silicium. Les résultats obtenus démontrent la capacité d'actionnement des microstructures en utilisant ces couches diélectriques et également la possibilité d'effectuer simultanément actionnement et détection électrique sur un seul et même transducteur. Les perspectives ouvertes par ce travail concernent l'amélioration de la qualité des films minces employés et l'exploitation de matériaux de permittivité plus élevée. Ils forment un pas de plus vers des systèmes de détection fonctionnels intégrant reconnaissance chimique et premier étage de traitement du signal. / Since two decades now, microscopic electronic devices including moving parts, called MicroElectroMechanical Systems (MEMS) have had a growing impact on industry and daily lives. Their range of application is already wide: from actuators (inkjet print heads, digital cinema projectors, etc.) to mechanical sensors (microphones, accelerometers, etc.). There is a growing research effort in the biosensing field as well. One of the main challenges for this application is to integrate a miniaturized and robust element to a vibrating beam-like structure, in order to achieve electromechanical actuation and detection, i.e. to convert an electrical signal into vibration and vice versa. In this work, we studied the integration of three dielectric materials on silicon microcantilevers, and successfully demonstrated the feasibility of simultaneous flexural actuation and detection of the structures by mean of dielectric transduction. Those results are one step forward the elaboration of mature detection systems.
38

NANO-ELECTRO-MECHANICAL SWITCH (NEMS) FOR ULTRA-LOW POWER PORTABLE EMBEDDED SYSTEM APPLICATIONS: ANALYSIS, DESIGN, MODELING, AND CIRCUIT SIMULATION

Alzoubi, Khawla Ali 30 July 2010 (has links)
No description available.
39

Etude des propriétés électro-thermo-mécaniques de nanofils en silicium pour leur intégration dans les microsystèmes / Study of electro-thermo-mechanical properties of silicon nanowires for MEMS applications

Allain, Pierre 16 October 2012 (has links)
Les propriétés électro-thermo-mécaniques remarquables qui peuvent apparaître dans les nanofils de silicium font l'objet d'un nombre croissant de travaux de recherche. Ces travaux de thèse de nature fortement expérimentale, visent à donner une meilleure connaissance de ces propriétés dans le cas de nanofils, en silicium monocristallin, fabriqués par approche descendante. Pour caractériser la piézorésistivité, deux méthodes de chargement mécaniques ont été développées : la flexion 4 points de puce et la traction/compression in situ avec un actionneur MEMS. La méthode 3ω a été choisie pour des mesures de conductivité thermiques. Ces propriétés ont été étudiées en fonction de la température et la contrainte dans une station sous pointes cryogénique.Les résultats montrent que les nanofils fabriqués à partir de substrats SOI amincis peuvent, de manière inattendue, être fortement contraints en compression après fabrication. Les nanofils de type p présentent, même en régime de mesure dynamique, des coefficients piézorésistifs élevés qui décroissent fortement avec la température et permettent une détection intégrée de mouvement de MEMS avec une limite de détection inférieure à l'Angström. Les mesures thermiques confirment l’effet d’échelle attendu de la conductivité thermique, la décroissance avec la température est compatible avec les résultats théoriques et expérimentaux précédemment publiés. / Remarkable nanoscale electro-thermo-mechanical properties of silicon nanowires are increasingly studies. This experimental thesis investigates such properties for top-down fabricated monocrystal silicon nanowires.A four points bending set-up and a MEMS actuator are developed to apply ex situ and in situ mechanical stress on nanowires. Those devices are characterised in a cryogenic environment within a microprobe station. Electrical properties and piezoresistivity are studied using those systems. Moreover, the 3ω method measures the thermal conductivity of these nanowires.From buckling of silicon nanowires, unexpected high compressive stress (>100 MPa) was identified in top silicon layers of SOI substrates. Drift-compensated measurements show that p type silicon nanowires present large piezoresistive coefficients which decrease with temperature. Additionally, the MEMS device demonstrates the possibility to detect ample MEMS movements with sub-ångström resolution using the nanowires as piezoresistive nanogauges. The thermal conductivity was found consistent with previously reported values for silicon nanowires, and expectedly decreases with temperature.
40

Nano systèmes électromécaniques résonants à haute fréquence (NEMS HF) : une rupture technologique pour l'imagerie infrarouge non refroidi / High frequency nano electro mechanical systems (NEMS HF) : a breakthrough in infrared imaging technology

Laurent, Ludovic 13 July 2017 (has links)
Les progrès de la microélectronique, axés en premier lieu sur l’amélioration des performances et la réduction des coûts des processeurs et des mémoires, ont aussi bénéficié depuis de nombreuses années aux capteurs, à l’éclairage, aux actionneurs et autres technologies dites More than Moore. La détection infrarouge à l’aide de détecteurs thermiques fait partie de ces bénéficiaires. Les détecteurs thermiques actuels utilisent principalement une fine couche résistive (typiquement du dioxyde de vanadium ou du silicium amorphe) déposée sur une membrane suspendue comme thermomètre : ce sont les microbolomètres. Cette technique a permis de produire des caméras thermiques dont le coût de fabrication a drastiquement chuté avec des performances qui se rapprochent des détecteurs photoniques onéreux, fonctionnant à des températures cryogéniques. Néanmoins, le coût de ces imageurs reste encore excessif pour des applications grand public (conduite nocturne, smartphones, domotique) tandis que les applications militaires (surveillance, lunettes portatives) demandent des performances accrues dans un budget maîtrisé. Un des objectifs des industriels du domaine est donc de réduire la surface des détecteurs, le pas pixel, afin d’augmenter le nombre de rétines fabriquées sur une plaque de silicium. Néanmoins, la réduction de cette surface diminue de facto le flux infrarouge incident sur le pixel, et donc le signal. Il faut donc améliorer la sensibilité des détecteurs à chaque nouveau pas pixel. La technologie résistive, largement employée par l’industrie jusqu’à maintenant, se prêtait volontiers à cet exercice jusqu’au pas de 17 µm, permettant de densifier d’un facteur 4 le nombre de détecteurs tous les 5 ans. L’auto-échauffement lié à la lecture résistive et le bruit en 1/f sont les principales causes du ralentissement observé dans cette réduction des échelles ces dernières années. Nos travaux se sont focalisés sur un nouveau principe de détection au pas de 12 µm, fonctionnant avec un auto-échauffement minime. Dans cette approche, une planche suspendue est mise en résonance mécanique autour de deux bras ancrés subissant une torsion. L’actionnement et la détection électrostatique du mouvement de la membrane sont réalisés avec deux électrodes situés 2 µm sous la planche. La modification du module d’Young avec la température et les contraintes thermiques vont modifier la fréquence de résonance. Les résonateurs mécaniques étant peu bruités, le suivi cette fréquence de résonance doit permettre de réaliser des détecteurs thermiques performants. Le travail de thèse a consisté à concevoir, fabriquer et caractériser de tels pixels et à comparer cette technique aux détecteurs résistifs. Différents modèles (linéaire et nonlinéaire) du mouvement de la structure sont présentés et comparés aux caractérisations expérimentales de résonateurs fabriqués en réseaux denses, selon différentes variantes. Nous avons mesuré le bruit fréquentiel de nos détecteurs puis leur sensibilité à un flux infrarouge. Les meilleurs dispositifs montrent une limite de sensibilité de 30 pW/√Hz. Une résolution sur la scène (NETD) de 2 K est obtenu pour un temps d’intégration adapté au temps image. Ces performances sont inégalées pour un résonateur non refroidi à ces dimensions. Nous montrons qu’un NETD de 20 mK est atteignable au pas de 12 µm (pour un temps de réponse de 10 ms) en se focalisant sur 3 axes de recherche : une cointégration des résonateurs avec leur électronique de lecture, une acquisition plus précise du signal par un temps d’intégration adapté au temps image et l’amélioration de la sensibilité thermique (TCF) du résonateur d’un facteur 10. Pour ce dernier point, nous présentons des méthodes afin d’améliorer le TCF. Finalement, nous étudions des architectures de pixels au pas de 5 µm présentant des performances théoriques proches de celles requises par l’imagerie infrarouge (NETD=70 mK et τth=8 ms). Des perspectives de transductions tout optiques sont finalement évoquées. / Progress in microelectronics has been mainly driven by informatics needs for addressing both increased performances and lower costs for processors and memories, according to the well-known Moore’s Law. For many years, these tremendous progresses in silicon fabrication and integration have also contributed to the emergence of new type of devices, such as sensors, actuators, filters, clocks or imagers, forming a new class of devices called More than Moore. Uncooled infrared imaging, which uses thermal sensors belongs to this new class of devices. Today thermal sensors principally use a thin resistive layer (mainly vanadium dioxide or amorphous silicon) on a suspended membrane as a thermometer and are called microbolometers. The fabrication cost of thermal cameras has dramatically dropped over the last 20 years, while attaining performances close to the expensive cooled cameras. Nevertheless, the cost of these imagers still remains too high for consumer market (night driving, smartphones, home automation) whereas military applications (surveillance, personal googles) need improved resolutions – in an affordable camera. Therefore, one objective of the microbolometers industry roadmap is to scale down the sensor surface – the pixel pitch – in order to increase the number of imagers fabricated on a silicon wafer. Yet, the pixel pitch reduction goes necessarily with a reduction of the captured infrared power leading to a reduction of the sensor signal. As a consequence, the sensor sensitivity needs to be improved as the pixel pitch scales down. The resistive technology has managed this scaling so far, down to 17µm pixel pitch, allowing a densification of the sensors by a factor 4 every 5 years. Despite this success, the scaling has been recently slowed down, mostly because of microbolometers self-heating issue and 1/f noise which are inherent to the resistive transduction. Our work has focused on a new type of sensor at 12µm pixel pitch, which theoretically gets rid of self-heating and 1/f noise. In our approach, an absorbing plate is excited at its mechanical resonance through two tiny torsion arms using an actuation electrode placed 2µm underneath. Pixel motion is also transduced electrostatically. Since micromechanical resonators feature very low frequency noise, we believe that an uncooled infrared sensor based on the monitoring of its resonance frequency (which changes with temperature through the TCF) should be extremely sensitive. In our work, we present different models (linear and nonlinear) for the pixel mechanical behavior and compare them to experimental characterization of resonators which were fabricated in dense arrays, according to several designs. We measure the frequency stability of our sensors along with their sensitivity to infrared flux. The best devices show a resolution of 30pW/sqrt(Hz), with a response time lower than one millisecond. The scene resolution (NETD) is 2K for an integration time compatible with imaging frame rate. These performances overtake results previously published on this topic with such reduced pixel pitch. We show that a NETD of 20mK (with a response time of 10ms) is reachable at 12µm pixel pitch if we can address the following 3 challenges: a cointegration of the resonators with their electronics, a shared readout of several pixels in the imaging frame rate and an improved TCF by a factor 10. Therefore, we provide different methods in order to improve the TCF. Finally, we present different pixel designs at 5µm pixel pitch which show theoretical performances close to uncooled infrared imaging requirements (NETD=70mK and tau_th=8ms). An optical transduction may also be a new route toward even better signal to noise ratio at low pitch.

Page generated in 0.4034 seconds