• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 90
  • 47
  • 18
  • 12
  • 8
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 367
  • 85
  • 55
  • 44
  • 43
  • 40
  • 37
  • 33
  • 33
  • 32
  • 32
  • 31
  • 30
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

INVESTIGATIONS OF INTERLEUKIN-1 ALPHA AS A NOVEL STROKE THERAPY IN EXPERIMENTAL ISCHEMIC STROKE

Salmeron, Kathleen Elizabeth 01 January 2018 (has links)
Stroke is a leading cause of death and disability worldwide. Although rapid recognition and prompt treatment have dropped mortality rates, most stroke survivors are left with permanent disability. Approximately 87% of all strokes result from the thromboembolic occlusion of the cerebrovasculature (ischemic strokes). Potential stroke therapeutics have included anti-inflammatory drugs, as well as many other targets with the goal of mitigating the acute and chronic inflammatory responses typically seen in an ischemic stroke. While these approaches have had great success in preclinical studies, their clinical translation has been less successful. Master inflammatory cytokines, such as IL-1, are of particular interest. IL-1’s isoforms, IL-1α and IL-1β, were long thought to have similar function. While IL-1β has been extensively studied in stroke, the role of IL-1α during post stroke inflammation has been overlooked. Because IL-1 inhibitors have been unsuccessful in clinical application, we reasoned that IL-1α may provide previously unknown benefits to the brain after injury. We hypothesized that IL-1α could be protective or even accelerate reparative processes in the brain such as producing new blood vessels (angiogenesis) or neurons (neurogenesis). To test that IL-1α is protective after stroke, we tested IL-1α’s protective effects on primary cortical neurons in in vitro models of stroke. We showed that IL-1α was directly protective on primary cortical neurons in a dose-dependent fashion. We then performed mouse middle cerebral artery occlusion stroke studies to determine the safety of giving IL-1α in vivo. These studies showed that administering IL-1α acutely was neuroprotective. However, intravenous (IV) administration of IL-1α resulted in transient, hemodynamic changes following drug delivery. To minimize these systemic effects, we administered IL-1α intra-arterially (IA) directly into the stroke affected brain tissue, allowing us to significantly lower the concentration of administered IL-1α. In comparison to IV, IA IL-1α showed greater histological protection from ischemic injury as well as improved functional recovery following stroke, all without systemic side effects. To test that IL-1α could aid in neurorepair following stroke, we tested IL-1α’s ability to help damaged blood vessels repair in vitro. We found that IL-1α significantly increased brain endothelial cell activation, proliferation, migration, and capillary formation. We tested IL-1α’s proangiogenic properties in vivo by administering IL-1α three days following stroke. Delayed administration allowed us to separate IL-1α’s acute neuroprotective effects from potential subacute angiogenic effects. We found that mice receiving IL-1α performed significantly better on behavioral tests and also showed greater vascularization within the penumbra two weeks following stroke. We also found that IL-1α treated animals showed more endothelial activation than vehicle treated animals. Finally, our studies showed that IL-1α treated animals showed increased early-phase neurogenesis with evidence of increased proliferation at the subventricular zone suggesting that IL-1α’s beneficial effects are even more far-reaching than previously thought. In conclusion, our experiments suggest that the inflammatory cytokine IL-1α is neuroprotective and neuroreparative in experimental ischemic stroke and worthy of further study as a novel stroke therapy.
52

Cord Blood Cell Therapy for Ischemic Stroke

Vendrame, Martina 15 July 2004 (has links)
Infusion of the "mononuclear fraction" of human cord blood cells (HUCBC), which is composed of immature blood cells and hematopoietic progenitors, is known to reduce neurobehavioral deficits in rats subject to middle cerebral artery occlusion (MCAO). When MCAO rats are infused with 106 cells 24 hours after the induction of the stroke, their motor function improves. To extend these findings, we first examined the behavioral recovery of MCAO rats in the presence of increasing doses of HUCBC. The recovery in behavioral performance seen with measurements of spontaneous activity and motor deficits, depended on the amount of cells delivered, with 106 HUCBC being the threshold for significant behavioral recovery. Measurements of the ischemic volume revealed an inverse relationship between HUCBC dose and damage volume, which reached significance at the higher HUCBC doses (107 and 3-5x107 cells). Moreover, investigation of the distribution of the intravenously injected cells showed that HUCBC were localized to the injured brain hemisphere and the spleen. Given these findings, we hypothesized that there may be a role of HUCBC in the modulation of the peripheral or brain-localized immune response that is normally evoked after stroke. Results on the effect of HUCBC infusion on splenocytes indicated that HUCBC treatment prevented the alterations in splenocyte type (CD8+ depletion) and function (T-cell suppression) induced by stroke. In particular, examination of cytokine production from splenocyte cultures of HUCBC-treated MCAO rats revealed increased production of IL-10 and decreased production of IFNgamma relative to MCAO rats. Microglia (immunostained with a CD11b antibody) and B cells (identified with the B220 cell marker) that were increased after MCAO were dramatically decreased after HUCBC treatment. Proinflammatory cytokines such as TNF-alpha, IL-1beta and IL-2 were upregulated after MCAO surgery and their expression was abrogated after HUCBC infusion. All these findings indicate that the action of HUCBC may be specifically related to the modulation of the stroke-induced inflammatory response, providing a possible mechanism by which cord blood cells have been repeatedly reported to promote functional recovery from ischemic injury.
53

Astaxanthin Attenuates MPTP Induced Neurotoxicity and Modulates Cognitive Function in Aged Mice

Grimmig, Beth 01 December 2017 (has links)
Parkinson’s disease is the second common neurodegenerative disease and is most frequently diagnosed in individuals over 60. There are no available medications that can prevent or restore the loss of neurons that correspond to motor impairments in patients. Identifying novel therapeutic compounds that are capable of slowing and reversing the extensive neurodegeneration that occurs in PD remains an important goal of the field. While basic research has identified potential therapeutic agents, studies often use young model organisms to demonstrate efficacy of the target compound. This approach ignores the impact of the aged CNS on the disease process, and likely contributes to high failure rates of translation in clinical trials. Here we investigate the capacity for astaxanthin (AXT), a xanthophyll carotenoid, to attenuate the neurotoxicity to MPTP, a toxin routinely used to establish parkinsonian symptoms in mice. We show that AXT reduces MPTP induced neurotoxicity in young, but less effective in the aged animals. While AXT is an interesting neuroprotective capacity, there are also multiple reports that indicate AXT may preserve cognitive function in the context of neurodegeneration and neural injury, the impact of AXT under physiological conditions and in the aged CNS has been largely uninvestigated. We also evaluate the effect of AXT on cognitive function in young and aged mice. Here, we show that AXT supplementation can modulate neural plasticity is associated with improved performance in cognitive behavioral tasks. This diet effect was observed in both young and aged mice, suggesting a novel and direct mechanism of action in synaptic function.
54

Therapeutic Targeting of Phosphodiesterase 4 with Rolipram as an Acute Neuroprotective Strategy following Spinal Cord Injury

Schaal, Sandra Marie 11 June 2008 (has links)
The extent of damage in animal models of spinal cord injury (SCI) can be reduced by various neuroprotective regimens that include maintaining levels of the second messenger, cyclic adenosine monophosphate (cAMP), via administration of the phosphodiesterase 4 inhibitor, Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following thoracic contusive SCI injury in rat. Rolipram or vehicle control (10% ethanol) was given daily for 2 weeks post-injury (PI) after which the preservation of oligodendrocytes, neurons and central myelinated axons (CMAs) was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (2 h PI) increased neuronal survival; 0.5 mg- 1.0 mg/kg protected oligodendrocytes, 1.0 mg/kg produced optimal preservation of CMAs. Administration of 1.0 mg/kg Rolipram via different routes (intravenous [i.v.], subcutaneous [s.c.] or oral, 2 h PI) demonstrated that all routes allowed for significant protection following SCI; the i.v. route provided the best clinical translation. Examination of delayed treatment, initiated 1-48 h after SCI, revealed protective efficacy of Rolipram even when administered up to 48 h PI. With the optimal therapeutic protocol (1.0 mg/kg, i.v.), Rolipram reduced the levels of the chemokine, monocyte chemoattractant protein acutely post-injury and elevated the levels of the anti-inflammatory cytokine, interleukin-10, based on Enzyme-Linked ImmunoSorbent Assay (ELISA) results. Rolipram, when delivered within 48 h PI, was also able to significantly reduce the number of ED1-positive mononuclear phagocytes compared to vehicle-treated controls. This work supports the use of Rolipram as an acute neuroprotectant following SCI, defines an administration protocol, and investigates a potential mechanism for Rolipram-mediated protection.
55

Investigation of the Role of Muller Glia-Derived Dickkopf3 (Dkk3) during Retinal Degeneration

Nakamura, Rei 18 November 2009 (has links)
Retinal degeneration is characterized by the irreversible loss of photoreceptors. A key research question is the identification and characterization of photoreceptor protective factors that prevent or delay vision loss. The Wnt pathway is a critical cellular communication pathway involved in development and diseases of the central nervous system (CNS). Recently, we discovered that multiple components of the Wnt pathway were differentially expressed in the rd1 mouse model of retinal degeneration. One of the most highly upregulated genes was Dickkopf3 (Dkk3), a secreted Wnt pathway protein of unknown function. Additionally, we demonstrated that Wnt signaling is neuroprotective in primary retinal culture (Yi et al., 2007). These data led to the hypothesis that Dkk3 is a regulator of Wnt-mediated neuroprotection during retinal degeneration. The role of Dkk3 in the retina and its activity in the Wnt pathway was identified in this dissertation project using a series of biochemical, molecular and cell biology methodologies. First, Dkk3 was shown to be expressed and secreted from Muller glia in mouse retinal tissue and primary Muller glia culture. I then demonstrated that Muller glia are a Wnt-responsive cell type and that Dkk3 potentiates Wnt3a-mediated signaling. Interestingly, the latter effect was not observed in other cell types in the retina such as retinal ganglion cells and retinal pigmented epithelial cells. Thus, Dkk3 may act on Muller glia to positively modulate Wnt signaling during retinal degeneration, which could potentially amplify the neuroprotective activity of the Wnt pathway. Next, the role of Dkk3 in cellular viability was explored. HEK293 cells stably expressing Dkk3 were shown to be significantly protected from staurosporine-induced apoptosis compared with vector control. This result suggests that Dkk3 may mediate a direct pro-survival effect onto photoreceptors during retinal degeneration. Protein interaction experiments demonstrated that Dkk3 formed a complex with the single pass transmembrane proteins Krm1 and Krm2 in the membrane, potentially in the endoplasmic reticulum (ER). Furthermore, Wnt signaling luciferase reporter assays demonstrated that Krm2, but not Krm1, abolished Dkk3-mediated Wnt3a potentiation. These data suggest that Dkk3 modulates Wnt signaling by antagonizing Dkk1-Krm dependent Wnt inhibition. Further studies will determine whether this activity is sufficient for the potentiation of Wnt signaling by Dkk3. Lastly, co-immunoprecipitation followed by mass spectrometry analysis was used to identify a novel interacting protein of Dkk3. Dkk3 was shown to interact with glucose response protein 78 (GRP78), an ER-resident chaperone. This suggested that Dkk3 protein is part of the unfolded protein response through GRP78 in the ER. In conclusion, these studies identified two novel functions of Dkk3 in regulating Wnt signaling pathway and cellular viability and suggest a physiological role for Dkk3 and Wnt signaling during retinal degeneration. Future studies will explore the significance of Dkk3-Krm and Dkk3-GRP78 interactions in the retina. Further, elucidation of the regulation of Dkk3 and other Wnt ligands in the ER and the consequence of ER stress on the biological activity of Wnt signaling will provide a better understanding of the role of the Wnt pathway during retinal degeneration.
56

The neuroprotective actions of quercetin

Nsoh Tabien, Hortense Elizabeth 06 May 2010
Trauma-induced spinal cord injury (SCI) is the most prevalent form of spinal cord injury affecting over 80% of the 36,000 Canadians living with this condition. The pathophysiological profile of traumatic SCI consists of an initial stage of direct damage followed by a series of secondary events, including reduced blood flow and increased generation of free radicals that leads to excitotoxicity, oxidative stress, hemorrhagic necrosis, inflammation, and apoptosis. We examined the hypotheses that delayed administration of the flavonoid quercetin inhibits the propagation of secondary events and promotes functional recovery after traumatic SCI by inhibiting inflammatory processes and signaling pathways that promote apoptosis and thereby promoting axon survival. To determine whether delayed quercetin treatment promoted functional recovery following SCI, male Wistar rats were subjected to a spinal cord compression injury by application of a 50 g modified aneurysm clip at the mid thoracic cord level. A treatment regimen of 75 µmol quercetin per kg rat or saline only (controls) was administered for a period of 3 days, 1 week or 2 weeks beginning at 2 weeks post surgery. Delayed quercetin treatment improved locomotion in injured animals although with severe deficit. To determine whether improved functional outcome correlated with improved tissue preservation and reduced scarring, we performed histological examinations at the injury site. In saline treated animals, at 8 weeks post injury we found over 80% of tissue loss with the majority of the remaining cells undergoing apoptosis. However, with 2 weeks delayed quercetin treatment, at least 50% of the tissue was still present at 8 weeks post surgery with a significant reduction of apoptosis. Quercetin treated animals also showed a reduction of reactive gliosis. To determine which intracellular signaling pathways may mediate the protective effects of quercetin, we carried out Western blots and immunocytochemical analyses of a number of potential pro-apoptotic pathways. We found that quercetin reduced the levels of the phosphorylated (activated) forms of the MAPK p38, ERK 1/2 (p42/44) and SAPK/JNK seen after SCI. We conclude that delayed quercetin treatment likely rescues neurons that would otherwise have died between the third and sixth weeks following injury by inhibiting apoptosis of glia cells. Quercetin may be acting via selective inhibition of kinase pathways that have been shown to be involved in apoptosis and cell growth. These findings not only reveal the protective effects of quercetin in reducing secondary damage after chronic SCI but also shed some light on some of the mechanisms underlying its actions.
57

The Role of Glutathione Metabolism in the Neuroprotective Effect of Mood Stabilizers

Pasiliao, Clarissa 13 January 2011 (has links)
Several lines of evidence implicate oxidative stress in the pathophysiology of bipolar disorder (BPD). The mood stabilizers lithium and valproate have been shown to protect against oxidative stress-induced cell death. This study examined whether an increase in cellular reductive potential due to glutathione (GSH) synthesis up-regulation underlies this neuroprotective effect. Using primary rat cortical neurons as a model, this study demonstrated that unlike lithium and valproate, carbamazepine and lamotrigine do not exert neuroprotective effects against H2O2-induced cell death. Moreover, the level of GSH and the GSH:GSSG ratio in neurons and in rat brain remained unchanged following chronic treatment with either lithium or valproate. Similarly, this study did not find a significant effect of treatment on the expression of genes encoding γ-glutamylcysteine ligase sub-units, Gclc and Gclm, in both neurons and the rat brain. These findings suggest that other molecular targets of lithium and valproate likely mediate the observed neuroprotective effects.
58

The Role of Glutathione Metabolism in the Neuroprotective Effect of Mood Stabilizers

Pasiliao, Clarissa 13 January 2011 (has links)
Several lines of evidence implicate oxidative stress in the pathophysiology of bipolar disorder (BPD). The mood stabilizers lithium and valproate have been shown to protect against oxidative stress-induced cell death. This study examined whether an increase in cellular reductive potential due to glutathione (GSH) synthesis up-regulation underlies this neuroprotective effect. Using primary rat cortical neurons as a model, this study demonstrated that unlike lithium and valproate, carbamazepine and lamotrigine do not exert neuroprotective effects against H2O2-induced cell death. Moreover, the level of GSH and the GSH:GSSG ratio in neurons and in rat brain remained unchanged following chronic treatment with either lithium or valproate. Similarly, this study did not find a significant effect of treatment on the expression of genes encoding γ-glutamylcysteine ligase sub-units, Gclc and Gclm, in both neurons and the rat brain. These findings suggest that other molecular targets of lithium and valproate likely mediate the observed neuroprotective effects.
59

The Development of Neurodegeneration and Behavioural Alterations following Lithium/Pilocarpine-induced Status Epilepticus in Rats

Dykstra, Crystal 19 March 2013 (has links)
The lithium/pilocarpine model of epilepsy mimics mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) in humans. Systemic injection of pilocarpine in lithium chloride (LiCL) pretreated adult rats results in an acute episode of severe continuous seizure activity (status epilepticus, SE). SE causes a latent period, whereby the animal appears neurologically normal, with subsequent development of spontaneous recurrent seizures (SRSs). Neuropathological changes that occur during the latent period are believed to contribute to the epileptic condition. The present thesis characterized the development of neuronal death and behavioural alterations in rats after SE induced by the repeated low-dose pilocarpine procedure (RLDP), and investigated the causal relationship between these two processes. Our data demonstrated that the RLDP procedure for the induction of SE results in widespread neurodegeneration and behavioural alterations comparable to the pilocarpine and low-dose pilocarpine (LDP) procedures. However, the advantage to using this protocol was strain-dependent as it reduced mortality in Wistar, but not in Long Evans Hooded (LEH), rats. Stereological analysis of neurons (stained for the neuronal specific marker [NeuN]) at various times (1 hr to 3 months) following SE showed that different brain regions within the hippocampus, amygdala, thalamus and piriform cortex exhibited differential rates of neuronal loss, with the majority of SE-induced neuronal death present by 24 hours. SE resulted in decreased exploratory behavior as assessed in the open field test, increased aggression to handling, increased hyperreactivity as assessed in the touch-response test, and anxiolytic effects as measured in the elevated-plus maze. Furthermore, deficits in search strategies used, as well as impaired spatial learning and memory, contributed to poor Morris water maze (MWM) performance. Partial neuroprotection within the hippocampus (by tat-NR2B9c) had no effect on the number of rats developing SRSs or on behavioural alterations; this argues against a causal relationship between neurodegeneration within this region, genesis of SRSs, and behavioural morbidity.
60

The neuroprotective actions of quercetin

Nsoh Tabien, Hortense Elizabeth 06 May 2010 (has links)
Trauma-induced spinal cord injury (SCI) is the most prevalent form of spinal cord injury affecting over 80% of the 36,000 Canadians living with this condition. The pathophysiological profile of traumatic SCI consists of an initial stage of direct damage followed by a series of secondary events, including reduced blood flow and increased generation of free radicals that leads to excitotoxicity, oxidative stress, hemorrhagic necrosis, inflammation, and apoptosis. We examined the hypotheses that delayed administration of the flavonoid quercetin inhibits the propagation of secondary events and promotes functional recovery after traumatic SCI by inhibiting inflammatory processes and signaling pathways that promote apoptosis and thereby promoting axon survival. To determine whether delayed quercetin treatment promoted functional recovery following SCI, male Wistar rats were subjected to a spinal cord compression injury by application of a 50 g modified aneurysm clip at the mid thoracic cord level. A treatment regimen of 75 µmol quercetin per kg rat or saline only (controls) was administered for a period of 3 days, 1 week or 2 weeks beginning at 2 weeks post surgery. Delayed quercetin treatment improved locomotion in injured animals although with severe deficit. To determine whether improved functional outcome correlated with improved tissue preservation and reduced scarring, we performed histological examinations at the injury site. In saline treated animals, at 8 weeks post injury we found over 80% of tissue loss with the majority of the remaining cells undergoing apoptosis. However, with 2 weeks delayed quercetin treatment, at least 50% of the tissue was still present at 8 weeks post surgery with a significant reduction of apoptosis. Quercetin treated animals also showed a reduction of reactive gliosis. To determine which intracellular signaling pathways may mediate the protective effects of quercetin, we carried out Western blots and immunocytochemical analyses of a number of potential pro-apoptotic pathways. We found that quercetin reduced the levels of the phosphorylated (activated) forms of the MAPK p38, ERK 1/2 (p42/44) and SAPK/JNK seen after SCI. We conclude that delayed quercetin treatment likely rescues neurons that would otherwise have died between the third and sixth weeks following injury by inhibiting apoptosis of glia cells. Quercetin may be acting via selective inhibition of kinase pathways that have been shown to be involved in apoptosis and cell growth. These findings not only reveal the protective effects of quercetin in reducing secondary damage after chronic SCI but also shed some light on some of the mechanisms underlying its actions.

Page generated in 0.0244 seconds