• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 18
  • 14
  • 12
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 27
  • 23
  • 22
  • 20
  • 20
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Vytvoření interaktivních pomůcek z oblasti 2D počítačové grafiky / Teaching aids for 2D computer graphics

Malina, Jakub January 2013 (has links)
In this master’s thesis we focus on the basic properties of computer curves and their practical applicability. We explain how the curve can be understood in general, what are polynomial curves and their composing possibilities. Then we focus on the description of Bezier curves, especially the Bezier cubic. We discuss in more detail some of fundamental algorithms that are used for modelling these curves on computers and then we will show their practical interpretation. Then we explain non uniform rational B-spline curves and De Boor algorithm. In the end we discuss topic rasterization of segment, thick line, circle and ellipse. The aim of master’s thesis is the creation of the set of interactive applets, simulating some of the methods and algorithm we discussed in theoretical part. This applets will help facilitate understanding and will make the teaching more effective.
112

A Fractional Step Zonal Model and Unstructured Mesh Generation Frame-work for Simulating Cabin Flows

Tarroc Gil, Sergi January 2021 (has links)
The simulation of physical systems in the early stages of conceptual designs has shown to be a key factor for adequate decision making and avoiding big and expensive issues downstream in engineering projects. In the case of aircraft cabin design, taking into account the thermal comfort of the passengers as well as the proper air circulation and renovation can make this difference. However, current numerical fluid simulations (CFD) are too computationally expensive for integrating them in early design stages where extensive comparative studies have to be performed. Instead, Zonal Models (ZM) appear to be a fast-computation approach that can provide coarse simulations for aircraft cabin flows. In this thesis, a Zonal Model solver is developed as well as a geometry-definition and meshing framework, both in Matlab®, for performing coarse, flexible and computationally cheap flow simulations of user-defined cabin designs. On one hand, this solver consists of a Fractional Step approach for coarse unstructured bi-dimensional meshes. On the other, the cabin geometry can be introduced by hand for simple shapes, but also with Computational Aided Design tools (CAD) for more complex designs. Additionally, it can be chosen to generate the meshes from scratch or morph them from previously generated ones. / <p>The presentation was online</p>
113

Převod trojúhelníkových polygonálních 3D sítí na 3D spline plochy / 3D Triangles Polygonal Mesh Conversion on 3D Spline Surfaces

Jahn, Zdeněk Unknown Date (has links)
In computer graphics we can handle unstructured triangular 3D meshes which are not too usable for processing through their irregularity. In these situations it occurs need of conversion that 3D mesh to more suitable representation. Some kind of 3D spline surface can be proper alternative because it institutes regularity in the form of control points grid and that's why it is more suitable for next processing. During conversion, which is described in this thesis, quadrilateral 3D mesh is constructed at first. This mesh has regular structure but mainly the structure corresponds to structure of control points grid of resulting 3D spline surface. Created quadrilateral 3D mesh can be saved and consequently used in specific modeling applications for T-spline surface creation.

Page generated in 0.015 seconds