• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Spectrum Access Network Simulation and Classification of Secondary User Properties

Rebholz, Matthew John 17 June 2013 (has links)
This thesis explores the use of the Naïve Bayesian classifier as a method of determining high-level information about secondary users in a Dynamic Spectrum Access (DSA) network using a low complexity channel sensing method.  With a growing number of users generating an increased demand for broadband access, determining an efficient method for utilizing the limited available broadband is a developing current and future issue.  One possible solution is DSA, which we simulate using the Universal DSA Network Simulator (UDNS), created by our team at Virginia Tech. However, DSA requires user devices to monitor large amounts of bandwidth, and the user devices are often limited in their acceptable size, weight, and power.  This greatly limits the usable bandwidth when using complex channel sensing methods.  Therefore, this thesis focuses on energy detection for channel sensing. Constraining computing requirements by operating with limited spectrum sensing equipment allows for efficient use of limited broadband by user devices.  The research on using the Naïve Bayesian classifier coupled with energy detection and the UDNS serves as a strong starting point for supplementary work in the area of radio classification. / Master of Science
2

Classification in high dimensional feature spaces / by H.O. van Dyk

Van Dyk, Hendrik Oostewald January 2009 (has links)
In this dissertation we developed theoretical models to analyse Gaussian and multinomial distributions. The analysis is focused on classification in high dimensional feature spaces and provides a basis for dealing with issues such as data sparsity and feature selection (for Gaussian and multinomial distributions, two frequently used models for high dimensional applications). A Naïve Bayesian philosophy is followed to deal with issues associated with the curse of dimensionality. The core treatment on Gaussian and multinomial models consists of finding analytical expressions for classification error performances. Exact analytical expressions were found for calculating error rates of binary class systems with Gaussian features of arbitrary dimensionality and using any type of quadratic decision boundary (except for degenerate paraboloidal boundaries). Similarly, computationally inexpensive (and approximate) analytical error rate expressions were derived for classifiers with multinomial models. Additional issues with regards to the curse of dimensionality that are specific to multinomial models (feature sparsity) were dealt with and tested on a text-based language identification problem for all eleven official languages of South Africa. / Thesis (M.Ing. (Computer Engineering))--North-West University, Potchefstroom Campus, 2009.
3

Classification in high dimensional feature spaces / by H.O. van Dyk

Van Dyk, Hendrik Oostewald January 2009 (has links)
In this dissertation we developed theoretical models to analyse Gaussian and multinomial distributions. The analysis is focused on classification in high dimensional feature spaces and provides a basis for dealing with issues such as data sparsity and feature selection (for Gaussian and multinomial distributions, two frequently used models for high dimensional applications). A Naïve Bayesian philosophy is followed to deal with issues associated with the curse of dimensionality. The core treatment on Gaussian and multinomial models consists of finding analytical expressions for classification error performances. Exact analytical expressions were found for calculating error rates of binary class systems with Gaussian features of arbitrary dimensionality and using any type of quadratic decision boundary (except for degenerate paraboloidal boundaries). Similarly, computationally inexpensive (and approximate) analytical error rate expressions were derived for classifiers with multinomial models. Additional issues with regards to the curse of dimensionality that are specific to multinomial models (feature sparsity) were dealt with and tested on a text-based language identification problem for all eleven official languages of South Africa. / Thesis (M.Ing. (Computer Engineering))--North-West University, Potchefstroom Campus, 2009.
4

Text-based language identification for the South African languages

Botha, Gerrit Reinier 04 September 2008 (has links)
We investigate the factors that determine the performance of text-based language identification, with a particular focus on the 11 official languages of South Africa. Our study uses n-gram statistics as features for classification. In particular, we compare support vector machines, Naïve Bayesian and difference-in-frequency classifiers on different amounts of input text and various values of n, for different amounts of training data. For a fixed value of n the support vector machines generally outperforms the other classifiers, but the simpler classifiers are able to handle larger values of n. The additional computational complexity of training the support vector machine classifier may not be justified in light of importance of using a large value of n, except possibly for small sizes of the input window when limited training data is available. We find that it is more difficult to discriminate languages within language families then those across families. The accuracy on small input strings is low due to this reason, but for input strings of 100 characters or more there is only a slight confusion within families and accuracies as high as 99.4% are achieved. For the smallest input strings studied here, which consist of 15 characters, the best accuracy achieved is only 83%, but when the languages in different families are grouped together, this corresponds to a usable 95.1% accuracy. The relationship between the amount of training data and the accuracy achieved is found to depend on the window size – for the largest window (300 characters) about 400 000 characters are sufficient to achieve close-to-optimal accuracy, whereas improvements in accuracy are found even beyond 1.6 million characters of training data. Finally, we show that the confusions between the different languages in our set can be used to derive informative graphical representations of the relationships between the languages. / Dissertation (MEng)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
5

以文件分類技術預測股價趨勢 / Predicting Trends of Stock Prices with Text Classification Techniques

陳俊達, Chen, Jiun-da Unknown Date (has links)
股價的漲跌變化是由於證券市場中眾多不同投資人及其投資決策後所產生的結果。然而,影響股價變動的因素眾多且複雜,新聞也屬於其中一種,新聞事件不但是投資人用來得知該股票上市公司的相關營運資訊的主要媒介,同時也是影響投資人決定或變更其股票投資策略的主要因素之一。本研究提出以新聞文件做為股價漲跌預測系統的基礎架構,透過文字探勘技術及分類技術來建置出能預測當日個股收盤股價漲跌趨勢之系統。 本研究共提出三種分類模型,分別是簡易貝氏模型、k最近鄰居模型以及混合模型,並設計了三組實驗,分別是分類器效能的比較、新聞樣本資料深度的比較、以及新聞樣本資料廣度的比較來檢驗系統的預測效能。實驗結果顯示,本研究所提出的分類模型可以有效改善相關研究中整體正確率高但各個類別的預測效能卻差異甚大的情況。而對於影響投資人獲利與否的關鍵類別"漲"及類別"跌"的平均預測效能上,本研究所提出的這三種分類模型亦同時具有良好的成效,可以做為投資人進行投資決策時的有效參考依據。 / Stocks' closing price levels can provide hints about investors' aggregate demands and aggregate supplies in the stock trading markets. If the level of a stock's closing price is higher than its previous closing price, it indicates that the aggregate demand is stronger than the aggregate supply in this trading day. Otherwise, the aggregate demand is weaker than the aggregate supply. It would be profitable if we can predict the individual stock's closing price level. For example, in case that one stock's current price is lower than its previous closing price. We can do the proper strategies(buy or sell) to gain profit if we can predict the stock's closing price level correctly in advance. In this thesis, we propose and evaluate three models for predicting individual stock's closing price in the Taiwan stock market. These models include a naïve Bayes model, a k-nearest neighbors model, and a hybrid model. Experimental results show the proposed methods perform better than the NewsCATS system for the "UP" and "DOWN" categories.
6

Machine Learning for Exploring State Space Structure in Genetic Regulatory Networks

Thomas, Rodney H. 01 January 2018 (has links)
Genetic regulatory networks (GRN) offer a useful model for clinical biology. Specifically, such networks capture interactions among genes, proteins, and other metabolic factors. Unfortunately, it is difficult to understand and predict the behavior of networks that are of realistic size and complexity. In this dissertation, behavior refers to the trajectory of a state, through a series of state transitions over time, to an attractor in the network. This project assumes asynchronous Boolean networks, implying that a state may transition to more than one attractor. The goal of this project is to efficiently identify a network's set of attractors and to predict the likelihood with which an arbitrary state leads to each of the network’s attractors. These probabilities will be represented using a fuzzy membership vector. Predicting fuzzy membership vectors using machine learning techniques may address the intractability posed by networks of realistic size and complexity. Modeling and simulation can be used to provide the necessary training sets for machine learning methods to predict fuzzy membership vectors. The experiments comprise several GRNs, each represented by a set of output classes. These classes consist of thresholds τ and ¬τ, where τ = [τlaw,τhigh]; state s belongs to class τ if the probability of its transitioning to attractor 􀜣 belongs to the range [τlaw,τhigh]; otherwise it belongs to class ¬τ. Finally, each machine learning classifier was trained with the training sets that was previously collected. The objective is to explore methods to discover patterns for meaningful classification of states in realistically complex regulatory networks. The research design took a GRN and a machine learning method as input and produced output class < Ατ > and its negation ¬ < Ατ >. For each GRN, attractors were identified, data was collected by sampling each state to create fuzzy membership vectors, and machine learning methods were trained to predict whether a state is in a healthy attractor or not. For T-LGL, SVMs had the highest accuracy in predictions (between 93.6% and 96.9%) and precision (between 94.59% and 97.87%). However, naive Bayesian classifiers had the highest recall (between 94.71% and 97.78%). This study showed that all experiments have extreme significance with pvalue < 0.0001. The contribution this research offers helps clinical biologist to submit genetic states to get an initial result on their outcomes. For future work, this implementation could use other machine learning classifiers such as xgboost or deep learning methods. Other suggestions offered are developing methods that improves the performance of state transition that allow for larger training sets to be sampled.
7

Analyse par apprentissage automatique des réponses fMRI du cortex auditif à des modulations spectro-temporelles

Bouchard, Lysiane 12 1900 (has links)
L'application de classifieurs linéaires à l'analyse des données d'imagerie cérébrale (fMRI) a mené à plusieurs percées intéressantes au cours des dernières années. Ces classifieurs combinent linéairement les réponses des voxels pour détecter et catégoriser différents états du cerveau. Ils sont plus agnostics que les méthodes d'analyses conventionnelles qui traitent systématiquement les patterns faibles et distribués comme du bruit. Dans le présent projet, nous utilisons ces classifieurs pour valider une hypothèse portant sur l'encodage des sons dans le cerveau humain. Plus précisément, nous cherchons à localiser des neurones, dans le cortex auditif primaire, qui détecteraient les modulations spectrales et temporelles présentes dans les sons. Nous utilisons les enregistrements fMRI de sujets soumis à 49 modulations spectro-temporelles différentes. L'analyse fMRI au moyen de classifieurs linéaires n'est pas standard, jusqu'à maintenant, dans ce domaine. De plus, à long terme, nous avons aussi pour objectif le développement de nouveaux algorithmes d'apprentissage automatique spécialisés pour les données fMRI. Pour ces raisons, une bonne partie des expériences vise surtout à étudier le comportement des classifieurs. Nous nous intéressons principalement à 3 classifieurs linéaires standards, soient l'algorithme machine à vecteurs de support (linéaire), l'algorithme régression logistique (régularisée) et le modèle bayésien gaussien naïf (variances partagées). / The application of linear machine learning classifiers to the analysis of brain imaging data (fMRI) has led to several interesting breakthroughs in recent years. These classifiers combine the responses of the voxels to detect and categorize different brain states. They allow a more agnostic analysis than conventional fMRI analysis that systematically treats weak and distributed patterns as unwanted noise. In this project, we use such classifiers to validate an hypothesis concerning the encoding of sounds in the human brain. More precisely, we attempt to locate neurons tuned to spectral and temporal modulations in sound. We use fMRI recordings of brain responses of subjects listening to 49 different spectro-temporal modulations. The analysis of fMRI data through linear classifiers is not yet a standard procedure in this field. Thus, an important objective of this project, in the long term, is the development of new machine learning algorithms specialized for neuroimaging data. For these reasons, an important part of the experiments is dedicated to studying the behaviour of the classifiers. We are mainly interested in 3 standard linear classifiers, namely the support vectors machine algorithm (linear), the logistic regression algorithm (regularized) and the naïve bayesian gaussian model (shared variances).
8

Analyse par apprentissage automatique des réponses fMRI du cortex auditif à des modulations spectro-temporelles

Bouchard, Lysiane 12 1900 (has links)
No description available.

Page generated in 0.0396 seconds