• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ernst Wilhelm Nay : Figur und Körperbild : Kunst und Kunsttheorie der vierziger Jahre /

Weltzien, Friedrich, January 2003 (has links)
Texte remanié de: Diss.--Köln, 2001. / Bibliogr. p. 365-382.
2

Die Geburt des elementaren Bildes aus dem Geist der Abstraktion : Versuch einer Deutung der theoretischen Schriften von Ernst Wilhelm Nay /

Claesges-Bette, Magdalene, January 2001 (has links)
Diss.--Köln, 2001. / Bibliogr. p. 211-220. Notes bibliogr.
3

Diffusion Of Hydrocarbons In Zeolites And Ions In Water

Borah, Bhaskar J 08 1900 (has links) (PDF)
Diffusion is a fundamental process which occurs in a wide variety of phases. It plays an important role in chemistry, physics, biology, materials science etc. In recent times, diffusion in confined systems has been widely investigated. Porous aluminosilicates such as zeolites, carbon nano tubes and metal organic frameworks(MOF) provide confined regions within which small molecules can diffuse. Indeed, diffusion within these materials have attracted considerable attention in the past few decades (see for example, “Diffusion in Zeolites and Other Microporous Solids”, J. Ka¨rger and D..M. Ruthven, John Wiley &Sons, NewYork,1992). Diffusion in confined spaces exhibits rich variety. For example, single file diffusion, window effect, levitation effect (LE), super-and sub-diffusive motion have all been observed in confined regions. Levitation effect provides an explanation for the dependence of self-diffusivity on the diameter of the diffusant. Consider a diffusant diffusing within a porous material. The pore network provided by the pore material may be characterized by the void and the neck distribution where the necks are the narrower regions interconnecting larger voids. It has been seen that diffusivity is maximum when the size of the diffusant is large and when it is comparable to the diameter of the bottleneck of the pore network. Recently it has been demonstrated that the levitation effect also exists in dense liquids such as water and dense solids. These developments essentially unify our understanding of diffusion in widely differing condensed matter phases. These results show that there is fundamentally no difference between porous substances and dense media at least with regard to dependence of self-diffusivity on the diameter of the diffusant. Chapter 1 provides a brief introduction to the subject of hydrocarbons confined within zeolites and ionic conductivity in polar solvents. We have given a description of the different applications of zeolites in the area of catalysis, separation etc. Window effect, single file diffusion, levitation effect and enhancement of viscosity of confined fluids are described. A brief review of various computational studies of hydrocarbons confined within zeolites is given. This is followed by a discussion of different experimental techniques and their use in the study of diffusion and adsorption within zeolites by many different groups in the last few decades. In the last section of the chapter we have discussed the anomalous size dependence of ionic conductivity in polar solvents which presumably has its origin in the Levitation Effect(LE). We have explained different theories proposed previously to understand the non-monotonic behavior of ionic conductivity as a function of ionic radius. A molecular dynamics(MD) investigation and quasi-elastic neutron scattering (QENS) study of pentane isomers in zeolite NaY is pre-sented in Chapter 2. QENS provides the first direct experimental evidence for LE. In an earlier study, a maximum in diffusivity as a function of the diameter of the diffusant for monatomic sorbates confined within zeolite NaY was observed by MD simulation. Since LE has been invoked to explain the diffusion in a wide variety of condensed matter phases, an experimental evidence of the levitation effect would be of great value. QENS measurements were carried out by Dr. Herve Jobic. Surprisingly we found that neopentane shows higher diffusivity than n-pentane and isopentane although its cross-sectional diameter perpendicular to the long molecular axis is larger compared to isopentane and n-pentane in agreement with predictions of LE. There is an excellent agreement between QENS results and MD simulation. LE predicts that the isomer with high diffusivity has low activation energy. The activation energies have been calculated from the Arrhenius plots using QENS as well as MD data. These follow the order Ea(n−pentane)>Ea(isopentane)>Ea(neopentane). Various other properties such as potential energy barrier at the bottleneck, velocity auto correlation function, intermediate scattering function, k dependence of the width of the dynamic structure factor have been computed. These provide additional insights into the nature of the motion of these isomers. They suggest that the barrier at the 12-ring window depends on the molecular diameter and levitation parameter of isomer. In Chapter 3, we report molecular dynamics simulation study of n-hexane and 2,2-dimethylbutane(DMB) mixture confined within the pores of zeolite NaY. We have taken an equimolar composition of the mixture consisting of n-hexane and DMB. The total number of hydrocarbon molecules in the system is 128. The simulations were carried out at various temperatures of 170, 200, 250 and 300 K. We have computed the self-diffusivities from the slope of the mean square displacement. It is found that the diffusivity of DMB is 0.82 ×10−9 m2/sec and that of n-hexaneis0.38 ×10−9 m2/sec. All previous studies of linear hydrocarbon and its branched analogue in different zeolites in the literature suggest that it is the linear member which has higher self-diffusivity. The cross-sectional diameter of DMB perpendicular to the long molecular axis is higher than that of n-hexane. Thus, DMB should have lower diffusivity. In order to understand this behavior of diffusivity we have computed the activation energies from the Arrhenius plots. The activation energy of DMB is found to be lower than that of n-hexane. This is inconformity with the levitation effect which states that the molecule with larger diameter comparable to that of the bottleneck diameter has low activation energy. We have also computed the potential energyprofileatthe12-ring window. The potential energy profile shows a barrier for n-hexane and a minimum for DMB at the window. This is in agreement with the previous results on monatomic species. We have computed other properties such as velocity auto correlation function, intermediate scattering function as well as wave number dependence of full width at half maximum of dynamic structure factor. These properties explain in detail the motion of n-hexane and DMB within NaY zeolite. In Chapter 4 molecular dynamics investigation into diffusion of n-decane and 3-methylpentane mixture within zeolite NaY. We have studied an equimolar mixture of n-decane and 3-methylpentane (36 of each) in the supercages of NaY zeolite in such a way that the con-centration is one molecule for every three cages. Simulations were performed at four different temperatures : 300, 350, 400 and 450 K. The distribution and orientation of the molecules inside the cage and at the window plane have been studied. Inside the cage, 3-methylpentane stays more close to the inner surface of the zeolite whereas n-decane prefers to stay close to the center of the cage. Both the species prefer to stay with their long molecular axis parallel to the surface of the zeolite. During passage through the window, 3-methylpentane is closer to the window center than n-decane. The distribution of the angle subtended by the end-to-end vector of the molecule with the normal to the window plane, while the molecular center is in the window plane, shows that 3-methylpentane samples a larger range of orientation than n-decane. This may lead to an entropic barrierfor n-decane. We have computed the diffusivity of both the molecules. Diffusivity of 3-methylpentane is found to be higher than n-decane. This behavior is consistent with the observations made in the last two chapters. The activation energy of 3-methylpentane is found to be 3.17 kJ/mol and forn-decaneitis6.0kJ/mol. This agrees with the prediction of levitation effect. The energy profile a the window shows shallow minimum for both n-decane and 3-methylpentane. Therefore, the energy profile does not describe the nature of motion of the molecules. We have computed the the dihedral angle distribution when the molecule is at the adsorption site and when it is at the window plane. The distributions essentially remain same for 3-methylpentane whereas a considerable change in the distributions is seen for n-decane. The gauche population of n-decane increases at the cost of trans population when it goes from the adsorption site to the window. The lower diffusivity of n-decane can be partly attributed to the change in the dihedral angle. Also, the orientational entropic barrier may be another cause of the slow motion of n-decane. Thus, in the present study the slow motion of n-decane is partly explained by levitation effect and partly by the change in the dihedral angle as well as the entropic barrier. Overall, the results in the last three chapters leads to the main conclusion that the branched isomer will diffuse faster than a linear hydrocarbon in zeolites with 12-ring window such as zeolite NaY. In Chapter 5, diffusion of pentane isomers in zeolites NaX and NaY has been investigated using pulsed field gradient nuclear magnetic resonance(PFG-NMR) and molecular dynamics(MD) techniques respectively. Temperature as well as concentration dependence of diffusivity have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of K¨arge rand Pfeifer. NMR diffusivities of the isomers exhibit the order D(n−pentane)>D(isopentane)>D(neopentane). The results from MD are in agreement with the QENS results where the diffusivities of the isomers follow the order D(n-pentane)<D(isopentane)<D(neopentane). The activation energies from NMR show Ea(n-pentane)<Ea(isopentane) <Ea(neopentane) whereas those from MD suggest the order Ea(n-pentane) >Ea(isopentane) >Ea(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between NMR and MD are attributed to the long time and length scales over which NMR samples are probed compared to MD or QENS. Th eresults from these studies suggests that although branched isomer intrinsically have higher diffusivities than linear hydrocarbons in zeolites such as NaY, the presence of defects can effectively annul this higher diffusivity of the branched isomer. Correlation of self-diffusivity and entropy of monatomic sorbates con-fined within zeolite NaY has been investigated in Chapter 6. We have carried out molecular dynamics simulation on monatomic sor-bates within zeolite NaY at 150, 110 and 90 K. As suggested by the Levitation Effect, the self-diffusivity shows a non-monotonic behavior as a function of the diameter of the sorbates. We have computed the entropy of the sorbates of various sizes ranging from 3.07˚ A to 7.0˚ A using the method proposed by Goddard and his co-workers as well as from the radial distribution function. The variation of entropy with the diffusant diameter exhibits a behavior similar to that of the self-diffusivity on diffusant diameter, thereby showing a strong correlation between the entropy and diffusivity. The loss of entropy on adsorption is a minimum for the diffusant with maximum diffu-sivity. This is in agreement with the experimental measurements of Kemball. Thus, entropy follows the prediction of the levitation effect. With decrease in temperature both self-diffusivity as well as entropy show more pronounced maximum as a function of the diameter of the sorbate. The dimensionless diffusivity from three different isotherms follow a Rosenfeld type of excess entropy scaling rule, D∗= Aexp(αSe) where A and α are the scaling coefficients. In Chapter 7 we have investigated the self-diffusivity as well as cor-rected diffusivity of pure methane in faujasite NaY combining quasi elastic neutron scattering experiment and molecular dynamics simu-lation. The QENS experiment carried out at 200 K led to an unex-pected dependence of self-diffusivity on loading for pure methane with the presence of a maximum at 32 CH4/unit cell. This is at variance with previous reports. Typically, diffusivity of a polar species such as methane in a zeolite such as NaY exhibits a monotonic decrease with loading. Molecular dynamics simulation was performed to reproduce this experimentally observed behavior. We could reproduce the diffusivity behavior qualitatively with a maximum at 16 CH4/unit cell. The corrected diffusivities obtained from both experiment as well simulation show similar behavior as the self-diffusivity with maximum at an intermediate loading. The experimental behavior was reproduced only when the interaction of methane with the sodium cation is in-creased suggesting that this interaction may be important. In Chapter8 we have investigated the role of attractive interaction on size dependent diffusivity maximum of ions in water. We have per-formed molecular dynamics simulation of mode lions in water. Earlier study of systems interacting only through van der Waals interaction shows that the size dependent diffusivity maximum or the levitation effect disappears when the attractive term(r−6 term) of the Lennard-Jones potential is put equal to zero. It is not clear whether the absence of the dispersion interaction in a system where there is electrostatic attraction will lead to a size dependent diffusivity maximum. There-fore, two sets of simulations with and without dispersion interaction between the ion and water have been carried out at700Kinorderto understand the influence of the attractive interaction. It is found that the self-diffusivity of the ions indeed exhibits an anomalous maximum as a function of the vanderWaals diameter for both the sets, viz., with dispersion and without dispersion interaction. In fact, the diffusivity maximum is seen to be more pronounced when there is no dispersion interaction. This existence of the maximum in self diffusivity when there is no dispersion interaction between the ion and the water is attributed to the attractive term from electrostatic interactions. De-tailed analysis shows that the solvent shell is more well defined in the presence of dispersion interactions. The velocity auto correlation function shows undulation at short times for the smaller ions indicating rattling motion inside the cage formed by the surrounding water molecules. Smaller ion exhibits a bi-exponential decay while a single exponential decay is seen for the ion with maximum diffusivity in the intermediate scattering function. The solvent structure appears to determine much of the dynamics of the ion. Interesting trends are seen in the activation energies and these can be understood in terms of the Levitation Effect.
4

Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο / Development of solid catalysts for the production of p–cymene from limonene

Καμίτσου, Μαρία 11 October 2013 (has links)
Το π–κυμένιο (p–ισοπρόπυλο τολουόλιο) είναι ένα πολύ σημαντικό προϊόν με μεγάλο εμπορικό ενδιαφέρον, καθώς αποτελεί κύριο συστατικό πολλών καλλυντικών, αρωμάτων, φαρμακευτικών προϊόντων, καθώς και την πρώτη ύλη για την παραγωγή της p–κρεσόλης. Η τρέχουσα διαδικασία παραγωγής του π–κυμενίου είναι η κατά Friedel–Crafts αλκυλίωση του τολουολίου με προπυλένιο ή προπανόλη–2, η οποία χρησιμοποιεί μεγάλες ποσότητες επιβλαβών οξέων, προκαλώντας πολλά προβλήματα χειρισμού στους εργαζόμενους με αυτό, προβλήματα διάβρωσης και προβλήματα διάθεσης των παραγόμενων αποβλήτων. Τα τελευταία χρόνια, η Πράσινη Χημεία έχει παρουσιασθεί ως η νέα προσέγγιση της Χημείας για την πρόληψη της μόλυνσης του περιβάλλοντος, καθώς και του σχεδιασμού χημικών προϊόντων και διεργασιών που είναι περισσότερο φιλικά προς το περιβάλλον. Η κατάλυση αποτελεί μία από τις κύριες αρχές, αλλά ταυτόχρονα και εργαλείο της Πράσινης Χημείας. Πιο συγκεκριμένα η ετερογενής κατάλυση, που εξυπηρετεί τους στόχους της Πράσινης Χημείας, λόγω της εξάλειψης της ανάγκης διαχωρισμού του παραγόμενου προϊόντος από τον καταλύτη. Επίσης, μία άλλη βασική παράμετρος της Πράσινης Χημείας είναι η χρήση της βιομάζας, ως ανανεώσιμη πρώτη ύλη, με σκοπό την παραγωγή ενέργειας και χημικών προϊόντων. Στην παρούσα εργασία, μελετάται η δυνατότητα καταλυτικής παραγωγής π–κυμενίου, βασιζόμενη στις αρχές της Πράσινης Χημείας. Για το σκοπό αυτό χρησιμοποιείται ως αντιδρών το α–λεμονένιο, ένα μονοτερπένιο το οποίο αποτελεί ανανεώσιμη πρώτη ύλη, καθώς είναι παραπροϊόν της βιομηχανίας χυμών λεμονιού και πορτοκαλιού, καθώς και της βιομηχανίας χάρτου και πολτού. Πιο αναλυτικά, μελετήθηκε η καταλυτική συμπεριφορά οξειδίων με μεγάλη ειδική επιφάνεια, όπως η SiO2, το MCM–41, ο ζεόλιθος NaY, η γ–Al2O3 και δύο δείγματα TiO2, με διαφορετικές ειδικές επιφάνειες, στην αντίδραση μετατροπής του λεμονενίου προς π–κυμένιο. Επίσης, ερευνήθηκε η επίδραση στη διεργασία τόσο της θερμοκρασίας της αντίδρασης, όσο και της σύστασης της ατμόσφαιρας κάτω από την οποία διεξαγόταν η αντίδραση. Τα πειράματα διεξήχθησαν σε αντιδραστήρα σταθερής κλίνης – ατμοσφαιρικής πίεσης, ενώ για την ανάλυση των λαμβανόμενων προϊόντων χρησιμοποιήθηκε αέριος χρωματογράφος – φασματογράφος μάζας (GC–MS). Από τους καταλύτες που μελετήθηκαν ο πιο αποτελεσματικός αποδείχθηκε η τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ακολουθούμενη από την τιτάνια με την χαμηλότερη ειδική επιφάνεια, τον ζεόλιθο NaY και τη γ–Al2O3. Τόσο η σίλικα όσο και το MCM–41 παρουσίασαν μάλλον αμελητέα δραστικότητα. Επίσης, παρατηρήθηκε ότι η απόδοση σε π–κυμένιο αυξανόταν γενικά με τη θερμοκρασία, ενώ δεν επηρεαζόταν πρακτικά από την ατμόσφαιρα που διεξαγόταν η αντίδραση. Τέλος, στους 300 οC και χρησιμοποιώντας την τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ως καταλύτη επιτεύχθηκε 90% απόδοση για το π–κυμένιο και 100% μετατροπή για το λεμονένιο. Η αυξημένη απόδοση της τιτάνιας αποδόθηκε σε επιτυχή συγκερασμό ανάμεσα στη σχετικά μεγάλη οξύτητα Brönsted και στη σχετικά εύκολη μεταβολή του λόγου Ti(IV)/Ti(III) κατά τη διάρκεια της αντίδρασης. Τα κινητικά αποτελέσματα επέτρεψαν να γραφεί ένα κινητικό σχήμα για τη διεργασία. / P–cymene is a very important product with great commercial interest because of its use as a main ingredient of cosmetics, perfumes and pharmaceutical products as well as raw material for the production of p–cresol. Current production is achieved by using the Friedel–Crafts reaction of toluene with propylene or propanol–2 which uses large quantities of harmful acids which, in turn, leads to industrial accidents, corrosion problems and the general difficulty of handling toxic wastes. A new concept of chemistry has been developed for confronting environmental problems. Green Chemistry is related to products and processes that are environmentally friendly. One of the basic tools of Green Chemistry is catalysis, mainly heterogeneous catalysis, because it allows the easy separation of the catalysts used from the final product. Moreover, following the principles of the Green Chemistry, biomass should be used in the production of renewable energy and chemical products. The present Thesis deals with the catalytic production of p–cymene based on the principles of Green Chemistry. In particular, we use a–limonene, by–product of the juice of orange and lemon industry as well as the paper industry, to produce p–cymene. A number of oxides with large specific surface area, such as SiO2, MCM–41, zeolite NaY, γ–Al2O3 and two samples of TiO2, were studied as catalysts. The effect of the reaction temperature and the composition of the atmosphere were also studied. All experiments were conducted on a fixed bed micro–reactor operating under atmospheric pressure coupled with an on–line Gas Chromatograph–Mass Spectrometer (GC – MS). The titania with the relatively high specific surface area was proved to be the most efficient catalyst among those studied. The following activity series has been obtained: «high surface area titania > small surface area titania > zeolite NaY > γ–Al2O3 > MCM–41 > SiO2». Negligible activity is exhibited by MCM–41 and SiO2. The percentage yield for p–cymene increases with temperature whereas is practically independent from the carrier gas. Very high percentage yield for p–cymene was obtained at 300οC over the high specific surface area titania (~90%). Complete transformation of a–limonene was obtained over the above catalyst at the same temperature. The very high activity obtained over this catalyst was attributed to good compromise between high acidity and easy transformation of the ratio Ti(IV)/Ti(III) during reaction. The kinetic results allow the clarification of the reaction scheme.
5

直貢替寺與直貢噶舉派教法 / DriGungTil Monastery and DriGung Kagyu's teachings

劉哲安, Liu, Che An Unknown Date (has links)
論文主題設定為《直貢替寺與直貢噶舉派教法》,在論述的架構,由以下九個章節串連而成。第一章,開門見山帶出研究直貢的意涵,故名為「直貢」與「直貢替寺」,其次討論地名與建寺的因緣。第二章,討論直貢替寺的歷史背景,也就是「直貢替寺興衰史」,其中包含寺院成長期、寺院動亂期、寺院衰敗期、寺院轉型期等加以探究。第三章,實際的考察寺院的硬體部分,即是「直貢替寺的規模與佛殿配置」。第四章 ,以人文素養為主軸,「直貢替寺的上師與神祇」,主要討論直貢替寺的活佛、直貢法台、赤奔、神祇等。第五章,經營理念與概念,以「 直貢替寺現況」為標題,分為寺院管理、寺院收入、寺院活動等。第六章, 依據文獻與訪問探討「直貢噶舉派教法源流」,共為兩個小子提依序為直貢噶舉宗見源流與直貢噶舉密法源流。第七章 ,修行的法鑰「大手印五具」,前行、正行、後行。接著進入修行成就的重點,第八章,「那若六法」,從基礎理論、生起次第、圓滿次第,依序接個次第而分析。第九章,「 修習傳規」,過去修習傳規、當今僧人的學習,藉以比照來深入分析過去與現今的不同點。最後,為研究總結即是「結論」,藉由研究工作所做出怎樣效益與發展,希望能進一步的提升大眾對於直貢教法能有認知與瞭解。 / Thesis is set to " DriGungTil Monastery and DriGung Kagyu's teachings ", in his discussion of the structure, formed by the following nine serial sections. The first chapter, straight out of the meaning of satin, fixed called "satin" and "satin for the Temple", followed by the discussion of names and Temple of karma. The second chapter, discussing the historical background of satin for the Temple, that is, "Rise and Fall of satin for the Temple", which contains growth monasteries, temples turmoil period, monasteries decay period, temples to explore such transition. Chapter III, the actual examination of the hardware part of the monastery, which is "the size of the Drikung Monastery and the Buddhist temple for the configuration." Chapter IV, the humanities as the spindle, "satin for the Temple's teachers and the gods", the main discussion for the Temple of the Living Buddha satin, satin France and Taiwan, Chi Ben, gods and so on. Chapter V, business ideas and concepts, to "satin for the Temple is" the title, into the temple management, monasteries income, temple activities. Chapter VI, based on the literature and access to explore the "origins of the Drikung Kagyu teachings" were put in order of the two boy were see the origins of the Drikung Kagyu and Drikung secret law origins. Chapter VII of the key practice of law, "Mahamudra five", the first line, is the line, underwent. Then enter the spiritual achievements of the focus of Chapter VIII, "that if the Six", from the basic theory, students from the sequence, complete sequence, then a sequence and sequence analysis. Chapter IX, "attend-conventional", in the past to attend mass regulations, today's monks to learn, to cf in-depth analysis of past and present different points. Finally, the study concluded that the "conclusion" made by how effective research and development, hoping to further raise public awareness for the satin teachings and understanding to have.
6

Diffusion Maximum Or Levitation Effect In Porous Solids, Dense Fluids And Polar Liquids And Development Of Hydrocarbon-Zeolite Potential And Related Aspects

Ghorai, Pradip Kumar 08 1900 (has links) (PDF)
No description available.
7

Tse Keh Nay-European Relations and Ethnicity: 1790s-2009

Sims, Daniel Unknown Date
No description available.
8

Tse Keh Nay-European Relations and Ethnicity: 1790s-2009

Sims, Daniel 06 1900 (has links)
This thesis examines Tse Keh Nay (Sekani) ethnic identity over three periods of Aboriginal-European relations: the fur trade period, the missionary period, and the treaty and reserve period. It examines the affects these three periods have had on the Tse Keh Nay as an ethnic group in four chapters, the first two dealing with the fur trade and missionary periods, and the last two with the treaty and reserve aspects of the treaty and reserve period. In it I argue that during the first two periods wider Tse Keh Nay ethnic identity was reinforced, while during the latter period local Tse Keh Nay identities were reinforced through government policies that dealt with Tse Keh Nay subgroups on a regional and localized basis. Despite this shift in emphasis, wider Tse Keh Nay ethnic identity has remained, proving that Tse Keh Nay ethnic identity is both situational and dynamic. / History

Page generated in 0.0175 seconds