• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Process-Structure-Property Relationship Study of Selective Laser Melting using Molecular Dynamics

Kurian, Sachin 13 January 2020 (has links)
Selective Laser Melting (SLM), a laser-based Additive Manufacturing technique has appealed to the bio-medical, automotive, and aerospace industries due to its ability to fabricate geometrically complex parts with tailored properties and high-precision end-use products. The SLM processing parameters highly influence the part quality, microstructure, and mechanical properties. The process-structure-property relationship of the SLM process is not well-understood. In the process-structure study, a quasi-2D model of Micro-Selective Laser Melting process using molecular dynamics is developed to investigate the localized melting and solidification of a randomly-distributed Aluminum nano-powder bed. The rapid solidification in the meltpool reveals the cooling rate dependent homogeneous nucleation of equiaxed grains at the center of the meltpool. Long columnar grains that spread across three layers, equiaxed grains, nano-pores, twin boundaries, and stacking faults are observed in the final solidified nanostructure obtained after ten passes of the laser beam on three layers of Aluminum nano-powder particles. In the structure-property study, the mechanical deformation behavior of the complex cellular structures observed in the SLM-fabricated 316L Stainless Steel is investigated by performing a series of molecular dynamics simulations of uniaxial tension tests. The effects of compositional segregation of alloying elements, distribution of austenite and ferrite phases in the microstructure, subgranular cell sizes, and pre-existing (grown in) nano-twins on the tensile characteristics of the cellular structures are investigated. The highest yield strength is observed when the Nickel concentration in the cell boundary drops very low to form a ferritic phase in the cell boundary. Additionally, the subgranular cell size has an inverse relationship with mechanical strength, and the nano-twinned cells exhibit higher strength in comparison with twin-free cells. / Master of Science / Additive Manufacturing's (AM) rise as a modern manufacturing paradigm has led to the proliferation in the number of materials that can be processed, reduction in the cost and time of manufacturing, and realization of complicated part geometries that were beyond the capabilities of conventional manufacturing. Selective Laser Melting (SLM) is a laser-based AM technique which can produce metallic parts from the fusion of a powder-bed. The SLM processing parameters greatly influence the part's quality, microstructure, and properties. The process-structure-property relationship of the SLM process is not well-understood. In-situ experimental investigation of the physical phenomena taking place during the SLM process is limited because of the very small length and time scales. Computational methods are cost-effective alternatives to the challenging experimental techniques. But, the continuum-based computational models are ineffective in modeling some of the important physical processes such as melting, nucleation and growth of grains during solidification, and the deformation mechanisms at the atomistic scale. Atomistic simulation is a powerful method that can offset the limitations of the continuum models in elucidating the underlying physics of the SLM process. In this work, the influence of the SLM process parameters on the microstructure of the Aluminum nano-powder particles undergoing μ-SLM processing and the mechanical deformation characteristics of the unique cellular structures observed in the SLM-fabricated 316L stainless steel are studied using molecular dynamics simulations. Ten passes of the laser beam on three layers of Aluminum nano-powder particles have unfolded the formation mechanisms of a complex microstructure associated with the SLM process. The study on the deformation mechanisms of 316L stainless steel has revealed the contribution of the cellular structures to its superior mechanical properties.
2

Synthesis of zinc oxide nanoparticles by a green process and the investigation of their physical properties

Nethavhanani, Takalani January 2017 (has links)
Magister Scientiae - MSc (Physics) / Zinc oxide (ZnO) is a wide and direct semiconductor with a wurtzite crystal structure. Its multifunctionality as the ideal candidate in applications such as blue-UV light emitting diodes, transparent conducting oxide, selective gas sensor and efficient catalyst support among others, has attracted a significant interest worldwide. Nano-scaled ZnO has been synthesized in a plethora of shapes. A rich variety of physical and chemical methodologies have been used in the synthesis of undoped or doped ZnO. However, such methods either necessitate relatively high vacuum infrastructures, elevated temperatures, or the use of toxic reagents. The "green chemistry" synthesis of metal oxide nanoparticles which is based on using natural plant extract as an effective 'reducing agent' of metal precursor, has been reported to be a cleaner and environment-friendly alternative to the physical and chemical methods. The thesis is based on the synthesis and the main physical properties of pure ZnO nanoparticles synthesized by a completely green chemistry process using the natural extract of Aspalathus Linearis to bio-reduce the zinc acetate precursor. The obtained ZnO nanopowdered samples were annealed at different temperatures from 300 °C to 600 °C. The samples were characterized using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Transmission Electron Microscopy, X-ray Diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis and Fourier Transform Infrared. Highly pure quasi-spherical ZnO nanoparticles with an average crystallite size of 24.6 nm (at 300 °C), 27.2 nm (at 400 °C), 27.6 nm (at 500 °C), and 28.5 nm (at 600 °C) were found. The results also showed that the average crystallite size increased with an increase in annealing temperature. It was successfully demonstrated that the natural plant extract of Aspalathus Linearis can be used in the bio-reduction of zinc acetate dihydrate to prepare highly pure ZnO nanoparticles.
3

Investigations of Solution Combustion Process and their Utilization for Bioceramic Applications

Sherikar, Baburao Neelkantappa January 2014 (has links)
Solution combustion synthesis (SCS) with its origin at IPC department of IISc has been widely practiced for synthesis of oxide materials. It is simple and low cost process, with energy and time savings that can be used to produce homogeneous, high purity, uniformly doped, nano crystalline ceramic powders. The powders characteristics such as crystallite size and surface area are primarily governed by enthalpy, flame temperature of combustion, fuel and fuel to oxidizer ratio ( F/O). In the present work an attempt has been made to investigate the process in order to exercise a control over the phase formation and nature of the product. Initial part of the work deals with the effect of fuel to oxidizer ratio on the powder properties of binary oxides with urea as fuel. The variation of adiabatic flame temperatures are calculated theoretically for different F/O ratios according to thermodynamic concept and correlated with the observed flame temperatures. Difference in the measured flame temperature and theoretical flame temperature in the fuel rich region is explained on the basis of incomplete combustion model. The effect of decomposition temperature difference of fuel and oxidizer, solubility of reactants on exothermicity of combustion reaction taking aluminiumnitrate system for various fuels is investigated. The effect of mixed fuel approach is studied by using the urea-glycine mixed fuel system using aluminium nitrate as oxidizer and employed for successful synthesis of the gamma alumina. Further Compaction behavior of SCS nano ceramic powders is studied by using Universal testing machine and the effect of F/O ratio, on agglomeration strength, aggregation strength of powder is investigated. Very few reports can be found on usage of SCS ceramic powder for biomaterial applications. By using these investigations a pyroxene series Diopside (CaMgSi2O6) silicate material is synthesized by SCS. Effect of different fuels on Diopside (DP) phase formation is investigated. Finally the DP and DP-ZnO composites, made by using Uniaxial hot pressing are investigated for their antibacterial, cytocompatibility properties. Antibacterial activity of E.Coli bacterium of Diopside powders was dose dependent type. Results of the bioactivity investigations shown flattened MC3T3 mouse osteoblast cells and MC C2C12 Myoblast cells and linkage bridges formed between them on Diopside and DP-ZnO surfaces show cyto compatibility and MTT results showed that percentage of ZnO needs to be tailored between 0-10 in order to achieve maximum cytocompatibility coupled with antibacterial property.

Page generated in 0.0526 seconds