• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la caractérisation à l'échelle nanométrique et en hyperfréquence de nanocomposants / Investigation of the characterization of nanocomponents at nanoscale and in microwave range

Wang, Fei 19 July 2016 (has links)
Nous présentons une méthode pour caractériser des nanocapacités sub-10 nm de diamètre et des nanotransistors par Interferometric Scanning Microwave Microscope (ISMM), avec lequel nous avons réussi, de non seulement optimiser la résolution latérale qui permet de connaitre leur topographie, mais aussi de les caractériser quantitativement à l’échelle de l’attofarad. La caractérisation quantitative des nanocapacités dans la gamme de l’attofarad est réalisée en utilisant une série de capacités d’une cal kit intégrées sur une même puce. Des capacités à l'échelle nanométrique et des diodes à barrière tunnel ont été détectées par les variations de l'amplitude et de la phase du signal haute fréquence réfléchi S11. En ce qui concerne les nanotransistors mesurés à l’aide du montage IDPMM, l’évolution de la tension de seuil a été étudiée par deux approches : les mesures de courant I_d (V_tip) et les mesures de courbes dS_11/dV. Les résultats obtenus par ces deux approches coïncident sauf l’apparition d’un ‘splitting’ à fort V_bg qui est seulement observé par l’ISMM. Une cartographie 2D de la tension de seuil avec deux grilles pour les nanotransistors a été établie pour la première fois. En résumé, cette étude montre que l’ISMM est un outil alternatif fiable pour la caractérisation électrique de nanocomposants émergents. / We present a method to characterize sub-10 nm capacitors and nanotransistors by Interferometric Scanning Microwave Microscopy (ISMM), with which we are able to not only optimize the lateral resolution which related to the topography, but also quantitatively characterize across the attofarad range. Quantitative impedance characterization of attofarad range capacitors is achieved using an “on-chip” calibration kit facing thousands of nanodevices. Nanoscale capacitors and tunnel barriers were detected through variations in the amplitude and phase of the reflected microwave signal, respectively. With the banc IDPMM (Interferometric Doping Profile Measurement Module), the change of threshold voltage of nanotransistor is observed by two methods: the measurement of current I_d (V_tip) and the spectroscopy curves S_11/dV. The curves obtained by two approaches coincide except for a ‘splitting’ at high V_bg. In addition, a precise 2D mapping of threshold voltage in dual gate operation for nanotransistor is established for the first time. In brief, this study indicates that ISMM is a reliable alternative tool for electrical characterization of emerging nanocomponents.
2

Multimodal sensing and imaging technology by integrated scanning electron, force, and near-field microwave microscopy and its application to submicrometer studies / Technologie de détection et d'imagerie multimodale par microscopie intégrée à balayage électronique, à force et à micro-ondes en champ proche, et son application aux études submicrométriques

Haenssler, Olaf Christian 22 February 2018 (has links)
La combinaison de plusieurs procédés d’imagerie et de mesure permet d’obtenir des ensembles de données complémentaires et parfois uniques. A l’aide d’une technique hybride de microscopie présentant des modalités de mesure différentes et des enregistrements synchrones, on peut recueillir des informations complémentaires sur des échantillons à l’échelle nanométrique. De plus, l’intégration de procédés nanorobotiques et de logiciels open-source permet une approche technologique pour la recherche sur les semi-conducteurs et les sciences des matériaux. Ce travail démontre le potentiel d’une telle technologie. Ce démonstrateur fonctionne dans la chambre d‘un MEB et sert de plateforme technologique dans laquelle sont intégrés différentes modalités, technologies et procédés. Un AFM basé sur un interféromètre optique compact permet l’imagerie de la topographie de surface tandis qu’un microscope à micro-ondes à balayage enregistre les caractéristiques électromagnétiques dans la gamme de fréquence des micro-ondes, le tout opérant dans le même MEB. L’engin est contrôlé par un ensemble de logiciels qui est optimisé pour la nanorobotique basée sur l‘imagerie. Ce démonstrateur technologique permet d’observer en direct la région d’intérêt à l’aide du microscope électronique tandis qu’est effectuée en champ proche la caractérisation de la surface de l’échantillon par intermédiaire des micro-ondes évanescentes et des forces intermoléculaires. Ensuite, est présenté un standard multimodal de test et qui valide la fonctionnalité de l’instrument démonstrateur. Le présent travail est complété par une analyse électrique de capacités MOS ainsi que leur approximation destinée au calibrage. / Various disciplines of micro- and nanotechnology requires combinatorial tools for the investigation, manipulation and transport of materials in the submicrometer range. The coupling of multiple sensing and imaging techniques allows for obtaining complementary and often unique datasets of samples under test. By means of an integrated microscopy technique with different modalities, it is possible to gain multiple information about nanoscale samples by recording at the same time. The expansion with nanorobotics and an open-source software framework, leads to a technology approach for semiconductor research and material science. This work shows the potential of such a multimodal technology approach by focusing on a demonstrator setup. It operates under high-vacuum conditions inside the chamber of a Scanning Electron Microscope and serves as a technology platform by fusing various microscopy modalities, techniques and processes. An Atomic Force Microscope based on a compact, optical interferometer performs imaging of surface topography, and a Scanning Microwave Microscope records electromagnetic properties in the microwave frequency domain, both operating inside an SEM. A software framework controls the instrument. The setup allows for observing with SEM, while imaging and characterizing with interacting evanescent microwaves and intermolecular forces simultaneously. In addition, a multimodal test standard is introduced and subsequently confirms the functionality of the demonstrator. Within this context, the work also includes an electrical analysis of micro-scale MOS capacitors, including an approximation for use in the calibration.

Page generated in 0.0249 seconds