• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 93
  • 90
  • 45
  • 11
  • 8
  • 8
  • 7
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 693
  • 131
  • 116
  • 105
  • 88
  • 70
  • 56
  • 54
  • 51
  • 48
  • 46
  • 45
  • 44
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Desenvolvimento de elastômeros fluorados multifuncionais baseados em nanocompósitos / Development of multifunctional fluoroelastomers based on nanocomposites

Zen, Heloísa Augusto 17 April 2015 (has links)
Os polímeros fluorados são conhecidos por suas ótimas propriedades mecânicas, pela alta estabilidade térmica e pela resistência a ambientes químicos agressivos, e por causa destas propriedades são muito utilizados em indústrias automobilística, petroquímica, de manufatura, dentre outras. Para aprimorar as propriedades térmicas e de barreira a gases da matriz polimérica, é muito utilizado a incorporação de nanopartículas nesta matriz, pois após a incorporação o nanocompósito permanece com suas próprias características e adquire novas propriedades devido a presença da nanopartícula. Devido as características dos fluoropolímeros, sua modificação estrutural e morfológica é muito difícil de ser obtida por técnicas tradicionais e para transpor essa dificuldade a radiação ionizante é uma técnica muito utilizada e eficaz para a alteração estrutural de polímeros fluorados. Neste trabalho foram desenvolvidos nanocompósitos poliméricos à base de fluoroelastômero (FKM) incorporado com quatro diferentes nanopartículas: argila Cloisite 15A, POSS 1159, POSS 1160 e POSS 1163. Após obtenção dos filmes de nanocompósitos foi realizado o processo de enxertia de estireno induzida por radiação ionizante, seguida de sulfonação para obtenção de membrana trocadora de íons. O efeito da incorporação de nanopartículas e da radiação ionizante nos filmes desenvolvidos foram caracterizados por difração de raios X, análise térmica, análise mecânica, microcospia eletrônica de varredura e intumescimento; enquanto que as membranas obtidas foram avaliadas quanto ao grau de enxertia, capacidade de troca iônica e intumescimento. Após a caracterização os filmes, foi verificado que a reticulação foi o efeito predominante nos nanocompósitos irradiados antes da vulcanização, enquanto que a degradação foi o efeito predominante nos nanocompósitos irradiados após a vulcanização. / The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization.
122

Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

Kim, Soon Ki 01 May 2012 (has links)
Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol-acrylate systems. However, nonreactive clays do not reduce the stress substantially and even decreases the polymerization rate in air. Additionally, the clay morphology and polymerization behavior are closely related with evolution of ultimate nanocomposite performance. Use of polymerizable organoclay significantly improves overall toughness of nanocomposites by increasing either modulus or elongation at break based on the type of polymerizable organoclay, which demonstrates the promise of this technology as a modulation and/or optimization tool for nanocomposite properties.
123

Synthesis and Characterization of Alpha-Hematite Nanomaterials for Water-Splitting Applications

Alrobei, Hussein 05 July 2018 (has links)
The recent momentum in energy research has simplified converting solar to electrical energy through photoelectrochemical (PEC) cells. There are numerous benefits to these PEC cells, such as the inexpensive fabrication of thin film, reduction in absorption loss (due to transparent electrolyte), and a substantial increase in the energy conversion efficiency. Alpha-hematite ([U+F061]-Fe2O3) has received considerable attention as a photoanode for water-splitting applications in photoelectrochemical (PEC) devices. The alpha-hematite ([U+F061]-Fe2O3) nanomaterial is attractive due to its bandgap of 2.1eV allowing it to absorb visible light. Other benefits of [U+F061]-Fe2O3 include low cost, chemical stability and availability in nature, and excellent photoelectrochemical (PEC) properties to split water into hydrogen and oxygen. However, [U+F061]-Fe2O3 suffers from low conductivity, slow surface kinetics, and low carrier diffusion that causes degradation of PEC device performance. The low carrier diffusion of [U+F061]-hematite is related to higher resistivity, slow surface kinetics, low electron mobility, and higher electro-hole combinations. All the drawbacks of [U+F061]-Fe2O3, such as low carrier mobility and electronic diffusion properties, can be enhanced by doping, which forms the nanocomposite and nanostructure films. In this study, all nanomaterials were synthesized utilizing the sol-gel technique and investigated using Scanning Electron Microscopy (SEM), X-ray Diffractometer (XRD), UV-Visible Spectrophotometer (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), Raman techniques, Particle Analyzer, Cyclic Voltammetry (CV), and Chronoamperometry, respectively. The surface morphology is studied by SEM. X-Ray diffractometer (XRD) is used to identify the crystalline phase and to estimate the crystalline size. FTIR is used to identify the chemical bonds as well as functional groups in the compound. A UV-Vis absorption spectral study may assist in understanding electronic structure of the optical band gap of the material. Cyclic voltammetry and chronoamperometry were used to estimate the diffusion coefficient and study electrochemical activities at the electrode/electrolyte interface. In this investigation, the [U+F061]-Fe2O3 was doped with various materials such as metal oxide (aluminum, Al), dichalcogenide (molybdenum disulfide, MoS2), and co-catalyst (titanium dioxide, TiO2). By doping or composite formation with different percentage ratios (0.5, 10, 20, 30) of aluminum (Al) containing [U+F061]-Fe2O3, the mobility and carrier diffusion properties of [U+F061]-hematite ([U+F061]-Fe2O3) can be enhanced. The new composite, Al-[U+F061]-Fe2O3, improved charge transport properties through strain introduction in the lattice structure, thus increasing light absorption. The increase of Al contents in [U+F061]-Fe2O3 shows clustering due to the denser formation of the Al-[U+F061]-Fe2O3 particle. The presence of aluminum causes the change in structural and optical and morphological properties of Al-[U+F061]-Fe2O3 more than the properties of the [U+F061]-Fe2O3 photocatalyst. There is a marked variation in the bandgap from 2.1 to 2.4 eV. The structure of the composite formation Al-[U+F061]-Fe2O3, due to a high percentage of Al, shows a rhombohedra structure. The photocurrent (35 A/cm2) clearly distinguishes the enhanced hydrogen production of the Al-[U+F061]-Fe2O3 based photocatalyst. This work has been conducted with several percentages (0.1, 0.2, 0.5, 1, 2, 5) of molybdenum disulfide (MoS2) that has shown enhanced photocatalytic activity due to its bonding, chemical composition, and nanoparticle growth on the graphene films. The MoS2 material has a bandgap of 1.8 eV that works in visible light, responding as a photocatalyst. The photocurrent and electrode/electrolyte interface of MoS2-[U+F061]-Fe2O3 nanocomposite films were investigated using electrochemical techniques. The MoS2 material could help to play a central role in charge transfer with its slow recombination of electron-hole pairs created due to photo-energy with the charge transfer rate between surface and electrons. The bandgap of the MoS2 doped [U+F061]-Fe2O3 nanocomposite has been estimated to be vary from 1.94 to 2.17 eV. The nanocomposite MoS2-[U+F061]-Fe2O3 films confirmed to be rhombohedral structure with a lower band gap than Al-[U+F061]-Fe2O3 nanomaterial. The nanocomposite MoS2-[U+F061]-Fe2O3 films revealed a more enhanced photocurrent (180 μA/cm2) than pristine [U+F061]-Fe2O3 and other transition metal doped Al-[U+F061]-Fe2O3 nanostructured films. The p-n configuration has been used because MoS2 can remove the holes from the n-type semiconductor by making a p-n configuration. The photoelectrochemical properties of the p-n configuration of MoS2-α-Fe2O3 as the n-type and ND-RRPHTh as the p-type deposited on both n-type silicon and FTO-coated glass plates. The p-n photoelectrochemical cell is stable and allows for eliminating the photo-corrosion process. Nanomaterial-based electrodes [U+F061]-Fe2O3-MoS2 and ND-RRPHTh have shown an improved hydrogen release compared to [U+F061]-Fe2O3, Al-[U+F061]-Fe2O3 and MoS2-[U+F061]-Fe2O3 nanostructured films in PEC cells. By using p-n configuration, the chronoamperometry results showed that 1% MoS2 in MoS2-[U+F061]-Fe2O3 nanocomposite can be a suitable structure to obtain a higher photocurrent density. The photoelectrochemical properties of the p-n configuration of MoS2-α-Fe2O3 as n-type and ND-RRPHTh as p-type showed 3-4 times higher (450 A/cm2) in current density and energy conversion efficiencies than parent electrode materials in an electrolyte of 1M of NaOH in PEC cells. Titanium dioxide (TiO2) is known as one of the most explored electrode materials due to its physical and chemical stability in aqueous materials and its non-toxicity. TiO2 has been investigated because of the low cost for the fabrication of photoelectrochemical stability and inexpensive material. Incorporation of various percentages (2.5, 5, 16, 25, 50) of TiO2 in Fe2O3 could achieve better efficiencies as the photoanode by enhancing the electron concentration and low combination rate, and both materials can have a wide range of wavelength which could absorb light in both UV and visible spectrum ranges. TiO2 doped with [U+F061]-Fe2O3 film was shown as increasing contacting area with the electrolyte, reducing e-h recombination and shift light absorption along with visible region. The [U+F061]-Fe2O3-TiO2 nanomaterial has shown a more enhanced photocurrent (800 μA/cm2) than metal doped [U+F061]-Fe2O3 photoelectrochemical devices.
124

Nanodiamond Based Composite Structures for Biosensing Applications

Villalba, Pedro Javier 01 May 2014 (has links)
This dissertation presents the synthesis and application of nanodiamond based materials for electrochemical biosensors. In this research work, nanodiamond particles have been used to prepare doped and undoped nanocrystalline diamond films, and conducting polymer composites for enhanced biosensing. The performance of the synthetized materials towards sensing applications was evaluated against glucose amperometric biosensing. Besides, cholesterol biosensing was attempted to prove the capabilities of the platform as a generic biosensing substrate. Biosensors have been proved to provide reliable detection and quantification of biological compounds. The detection of biological markers plays a key factor in the diagnosis of many diseases and, even more importantly, represents a major aspect in the survival rate for many patients. Among all of the biosensors types, electrochemical biosensors have demonstrated the best reliability to cost ratio. Amperometric biosensors, for example, have been used for decades as point of care sensing method to monitor different conditions such as glucose. Despite the amount the research presented, the sensitivity, selectivity, stability, low cost and robustness are always driving forces to develop new platforms for biosensor devices. In the first phase of this dissertation, we synthesized undoped and nitrogen doped nanocrystalline diamond films. The synthetic material was thoroughly studied using different material characterization techniques and taken through a chemical functionalization process. The functionalization process produced a hydrogen rich surface suitable for enzymatic attachment. Glucose oxidase was covalently attached to the functionalized surface to form the biosensing structure. The response of the biosensor was finally recorded following voltammetry and amperometric techniques under steady state and dynamic conditions. The experimental results demonstrated that conductivity induced by the doping process enhanced the sensitivity of the sensing structure with respect to the undoped substrate. Also, the functionalization procedure showed strong bonding to avoid enzyme leaching during the measurements. Later, in the second phase of this dissertation, the nanodiamond particles were used as filler for conducting polymer composites. The objective for developing these composite materials was to overcome the high resistivity observed for nanocrystalline films. The experimental results demonstrated that the inclusion of nanodiamond particles increased the sensitivity of the overall structure towards the quantification of glucose with respect to the nanocrystalline films and the bare polymer. Besides, the experiment showed a noticeable enhancement in the signal-to-noise ratio and the mechanical stability of the sensing platform due to the nanodiamond addition. The best structures from the previous experiments were further grafted with iron oxide nanoparticles to attempt signal amplification. Initial experiments with nanodiamond based composited showed similar current for low glucose concentrations for two different active electrochemical sensing areas. This observation indicates that more area is still available to transport signal and to enhance even further the sensing action. Oxidation of iron oxide nanoparticles after initial enzymatic decomposition of glucose has been proved to provide higher current for the same glucose concentration; thus, creating amplification effect for the signal. Finally, the toxicity of the nanomaterial synthesized during this dissertation was evaluated in mammalian cells. The advances in biosensing techniques indicate the potential application of amperometric platform for continuous implantable devices; hence, the toxicity of the materials becomes a key aspect of the platform design.
125

Oxydation des Nanocomposites à Matrice Polyoléfinique

Gutiérrez, Glennys Giovanna 30 November 2010 (has links) (PDF)
Les matériaux nanocomposites suscitent un intérêt grandissant en recherche dû au fait qu'ils améliorent les propriétés barrières en incorporant une faible quantité de nanocharges inférieure à 5%. Actuellement, les montmorillonites organiquement modifiées (MMT-O) sont les nanocharges les plus répandues grâce à leur rapport de forme élevé permettant de favoriser les interactions surfaciques argile/polymère. Si ces matériaux présentent d'excellentes performances, leur durabilité et l'impact de la présence d'argile dans la matrice polymère n'a pas encore été étudiée en profondeur. Notre objectif était d'étudier finement le comportement vis-à-vis de l'oxydation de nanocomposites à matrice polypropylène et polyéthylène non stabilisés afin de mettre en évidence les effets de l'argile sur le processus d'oxydation aux faibles températures Ces effets ont deux origines : une origine chimique et une origine physique. Pour étudier ces deux origines, une démarche expérimentale et de modélisation du processus d'oxydation contrôlée ou non par la diffusion d'oxygène (respectivement dégradation hétérogène et homogène) a été mise en place. D'une manière générale, il apparait que la présence de MMT-O accélère l'oxydation. Ce phénomène a été modélisé par l'ajout de réaction catalytique entre les particules métalliques initialement présentes dans la MMT-O et les hydroperoxydes liés à l'oxydation. Concernant l'effet de la MMT-O sur la perméabilité à l'oxygène, deux cas ont été observés : dans le cas du système à base polypropylène (morphologie intercalée/exfoliée), une diminution de 45% de perméabilité a été mesurée par rapport à la matrice seule, alors que dans le cas du système à base de polyéthylène (morphologie intercalée), pas de variation significative a été détectée. Les cinétiques et les profiles dans l'épaisseur des échantillons des produits d'oxydation ont été mesurés et simulés par un modèle couplant réactions d'oxydation et diffusion d'oxygène dans les deux systèmes. Dans le cas du système à matrice polyéthylène, les modifications induites par l'oxydation sur les masses molaires et sur la morphologie cristalline sont prédites. Enfin, en se basant sur des relations structure-propriétés, des profils de module mécanique ont été simulés dans le cas de la dégradation hétérogène (oxydation contrôlée par la diffusion). Ces simulations ont été confirmées par des mesures de modules dans l'épaisseur d'échantillons épais de nanocomposite à matrice polyéthylène oxydés.
126

Self Lubrication on the Atomic Scale : Design, Synthesis and Evaluation of Coatings

Lindquist, Mattias January 2008 (has links)
In this thesis a new design concept of tribologically active coatings aimed for low friction applications, have been explored. Materials modeled by ab initio DFT calculations were realized through deposition of carbide and nanocomposite coatings by DC-magnetron sputtering. The design concept employs destabilization of a carbide material by alloying with a weak carbide-forming element, which refines the structure into a nanocomposite. The destabilization creates a driving force for superficial ejection of carbon in a tribological contact, forming a lubricious graphitic carbon layer. The otherwise hard material limits the real contact area and the transformed layer accounts for low shear resistance. Hence, the ideal situation for low friction is provided by formation of an easily sheared thin surface layer on a hard material. TiAlC was chosen as a model system for the theoretical modeling as well as for the depositions. The elemental composition, microstructure and mechanical properties of the coatings were characterized to relate the inherent properties to the experimentally achieved tribological response. As predicted by theory, TiAlC coatings were shown to provide self-lubrication on the atomic scale by giving low friction through a tribologically induced surface restructuring. It was shown possible to reduce the friction coefficient from 0.35 for TiC to 0.05 by addition of Al. Alloying with Al also proved to be a potent method in tailoring residual stresses from high and often detrimental levels to acceptable levels, with no significant reduction in either hardness or Young’s modulus. The effect of adding Al into TiC on the oxidation resistance was also explored. The critical temperature for onset of oxidation proved to increase with the Al-content from about 350°C for TiC to about 450°C for TiAlC with about 7 at% Al. A further increase in Al content did not change the onset temperature further but reduced the oxidation rate.
127

Preparation and analysis of crosslinked lignocellulosic fibers and cellulose nanowhiskers with poly(methyl-vinyl ether co maleic acid) â " polyethylene glycol to create novel water absorbing materials

Goetz, Lee Ann 13 November 2012 (has links)
The search for cellulosic based products as a viable alternative for petroleum-based products was the impetus for covalently crosslinking lignocellulosic fibers and nanocellulose whiskers with poly(methyl vinyl ether) co maleic acid (PMVEMA) - polyethylene glycol (PEG). The lignocellulosics used were ECF bleached softwood (pine) and ECF bleached birch kraft pulp. This thesis also tests the hypothesis that water absorption and retention can be improved by grafting PMVEMA-PEG to the surface of ECF bleached kraft pulp hardwood and softwood fibers via microwave initiated crosslinking. The crosslinking of the PMVEMA to hardwood and softwood kraft ECF bleached pulp fibers resulted in enhanced water absorbing pulp fibers where the PMVEMA is grafted onto the surface of the fibers. The crosslinking was initiated both thermally and via microwave irradiation and the water absorption and water retention was measured as the percent of grafted PMVEMA. This was the first application of microwave crosslinking of pulp fibers with the goal of creating water absorbing pulp fibers. Ultimately, the water absorption values ranged from 28.70 g water per g dry crosslinked pulp fiber (g/g) to 230.10 g/g and the water retention values ranged from 26% to 71% of the water retained that was absorbed by the crosslinked pulp fibers. The microwave initiated crosslinked fibers had comparable results to the thermally crosslinked fibers with a decreased reaction time, from 6.50 min (thermal) to 1 min 45 sec (microwave). Cellulose nanowhiskers, crystalline rods of cellulose, have been investigated due to their unique properties, such as nanoscale dimensions, low density, high surface area, mechanical strength, and surface morphology and available surface chemistry. Prior to this study, the crosslinking of cellulose whiskers with the matrix via solution casting of liquid suspensions of whiskers and matrix had not been explored. The hypothesis to be investigated was that incorporating cellulosic whiskers with the PMVEMA-PEG matrix and crosslinking the whiskers with the matrix would yield films that demonstrate unique properties when compared to prior work of crosslinking of PMVEMA-PEG to macroscopic ECF bleached kraft pulp fibers. Solution cast composites of cellulose nanowhiskers-PMVEMA-PEG were crosslinked at 135 °C for 6.5 min and analyzed for crosslinking, thermal stability, strength and mechanical properties, whisker dispersion, and water absorption and uptake rates. The whisker-composites demonstrated unique properties upon crosslinking the whiskers with PMVEMA-PEG, especially the elongation at break and tensile strength upon conditioning of the final materials at various relative humidities. In addition, the whiskers improved the thermal stability of the PMVEMA-PEG matrix. This is significant as methods of improving processing thermal stability are key to developing new materials that utilize cellulose whiskers, PMVEMA, and PEG. This thesis addresses the hypothesis that cellulose nanowhiskers that are crosslinked with a matrix can create new whisker-matrix composites that behave differently after crosslinking.
128

Novel Material Behavior in Carbon Nanotube/Elastomer Composites

Carey, Brent 05 September 2012 (has links)
Composites are multiphasic materials with individual constituent parts that work cooperatively to produce some desired result. For the common case of structural composites, the use of nanoscale additives does not always yield a predictable outcome due to the complex interactions that occur in the interfacial region where a reinforcing filler meets the supporting matrix. It stands to reason, however, that the thoughtful and deliberate exploitation of unusual effects in this region could lead to the development of nanocomposite materials with extraordinary properties. In this thesis work, I will introduce two such responses in a compliant nanocomposite consisting of highly-aligned carbon nanotubes (CNTs) encased within a poly(dimethylsiloxane) (PDMS) matrix. It is first demonstrated that the material exhibits extremely anisotropic dynamic mechanical behavior. The composite will behave in a way that is evocative of the neat polymer when deformed orthogonal to the CNT alignment direction, yet will exhibit strain softening when cyclically compressed along their axis due to the collective buckling of the nanotube struts. Next, it is shown that this nanocomposite material has the ability to respond and adapt to applied loads. Independent, yet complimentary tests reveal that the structure of the polymer in the presence of nanoscale interstitials will evolve during dynamic stressing, an effect that was predicted nearly 50 years ago. With support from both recent and established literature, an updated mechanism is proposed. Collectively, these results provide insight into the complicated mechanics between polymer matrices and embedded nanoparticles, and assist in the design of advanced synthetic materials with unique physical properties.
129

Synthesis of New Magnetic Nanocomposite Materials for Data Storage

Alamri, Haleema January 2012 (has links)
The confinement of magnetic nanoparticles (Prussian blue analogues (PBAs) has been achieved using mesostructured silica as a matrix. The PBAs have the general formula AxMy[M'(CN)n]z, where A is an alkali metal cation; M: CoII, NiII, SmIII; and M': CoII. The two reactions were run in parallel and led to a mesostructured silica matrix that contains nanoparticles of PBA homogeneously distributed within the silica framework. As initially reported for the synthesis of Co3[Fe(CN)6]2 magnetic nanoparticles, in the research conducted for this thesis, this synthesis has been extended to other compounds and to lanthanides such as Sm and has also included the study of the influence of different parameters (pH, concentration). As these nanocomposites are potentially good candidates for the preparation of bimetallic nanoparticles and oxides through controlled thermal treatment, the second goal of the research was to employ an adapted thermal treatment in order to prepare metal and metal oxide nanoparticles from PBA, directly embedded in the silica matrix. To this end, the influence of the thermal treatment (temperature, time, atmosphere) on the nature and structure of the resulting materials was investigated, with a focus on the potential use of the combustion of the organic templates as in-situ reducing agents. For some compounds, the preparation of bimetallic nanoparticles was successful. This method was tentatively applied to the preparation of specific Sm:Co bimetallic compounds, are well known as one of the best permanent magnets currently available.
130

Organic/Inorganic Hybrid Nanocomposite Infrared Photodetection by Intraband Absorption

Lantz, Kevin Richard January 2011 (has links)
<p>The ability to detect infrared radiation is vital for a host of applications that include optical communication, medical diagnosis, thermal imaging, atmospheric monitoring, and space science. The need to actively cool infrared photon detectors increases their operation cost and weight, and the focus of much recent research has been to limit the dark current and create room-temperature infrared photodetectors appropriate for mid-to-long-wave infrared detection. Quantum dot infrared photodetectors (QDIPs) provide electron quantum confinement in three dimensions and have been shown to demonstrate high temperature operation (T>150 K) due to lower dark currents. However, these inorganic devices have not achieved sensitivity comparable to state-of-the-art photon detectors, due in large part to the inability to control the uniformity (size and shape) of QDs during strained-layer epitaxy.</p><p>The purpose of this dissertation research was to investigate the feasibility of room-temperature infrared photodetection that could overcome the shortfalls of QDIPs by using chemically synthesized inorganic colloidal quantum dots (CQDs). CQDs are coated with organic molecules known as surface ligands that prevent the agglomeration of dots while in solution. When CQDs are suspended in a semiconducting organic polymer, these materials are known as organic/inorganic hybrid nanocomposites. The novel approach investigated in this work was to use intraband transitions in the conduction band of the polymer-embedded CQD for room-temperature photodetection in the mid-wave, and possibly long-wave, infrared ranges. Hybrid nanocomposite materials promise room-temperature operation due to: (i) large bandgaps of the inorganic CQDs and the semiconducting polymer that reduce thermionic emission; and (ii) low dark current due to the three-dimensional electron confinement in the CQD and low carrier mobility in the semiconducting polymer. The primary material system investigated in this research was CdSe CQDs embedded in the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV). </p><p>Photoluminescence (PL) spectroscopy of MEH-CN-PPV thin films was conducted to determine the dependence of polymer morphology on deposition method in order to identify a reliable device fabrication technique. Three different deposition methods were investigated: drop-casting and spin-casting, which are solution-based; and matrix-assisted pulsed laser evaporation (MAPLE), which is a vacuum-based method that gently evaporates polymers (or hybrid nanocomposites) and limits substrate exposure to solvents. It was found that MAPLE deposition provides repeatable control of the thin film morphology and thickness, which is important for nanocomposite device optimization. </p><p>Ultra-fast PL spectroscopy of MEH-CN-PPV/CdSe thin films was investigated to determine the charge generation and relaxation dynamics in the hybrid nanocomposite thin films. The mathematical fitting of time-integrated and time-resolved PL provided a rigorous and unique model of the charge dynamics, which enabled calculation of the radiative and non-radiative decay lifetimes in the polymer and CQD. These results imply that long-lived electrons exist in the conduction band of the CQD, which demonstrate that it should be possible to generate a mid- to long-wave infrared photocurrent based on intraband transitions. In fact, room-temperature, intraband, mid-infrared absorption was measured in thin films of MEH-CN-PPV/CdSe hybrid nanocomposites by Fourier transform infrared (FTIR) absorbance spectroscopy. In addition, the hybrid nanocomposite confined energy levels and corresponding oscillator strengths were calculated in order to model the absorption spectrum. The calculated absorption peaks agree well with the measured peaks, demonstrating that the developed computer model provides a useful design tool for determining the impact of important materials system properties, such as CQD size, organic surface ligand material choice, and conduction band offset due to differences in CQD and polymer electron affinities.</p><p>Finally, a room-temperature, two terminal, hybrid nanocomposite mid-infrared photoconductor based on intraband transitions was demonstrated by FTIR spectral response measurements, measuring a spectral responsivity peak of 4.32 µA/W at 5.5µm (5 volts), and calibrated blackbody spectral photocurrent measurements, measuring a spectral responsivity peak of 4.79 µA/W at 5.7 µm (22 volts). This device characterization demonstrated that while the novel approach of intraband infrared photodetection in hybrid nanocomposites is feasible, significant challenges exist related to device fabrication and operation. Future work is proposed that could address some of these important issues.</p> / Dissertation

Page generated in 0.0514 seconds