• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 29
  • 8
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 170
  • 170
  • 35
  • 32
  • 32
  • 25
  • 24
  • 19
  • 19
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Surface modification of nanoparticles for polymer/ceramic nanocomposites and their applications

Kim, Philseok 17 November 2008 (has links)
Polymer/ceramic nanocomposites benefit by combining high permittivities (r) of metal oxide nanoparticles with high dielectric strength and excellent solution-processability of polymeric hosts. Simple mixing of nanoparticles and polymer generally results in poor quality materials due mainly to the agglomeration of nanoparticles and poor miscibility of nanoparticles in host materials. Surface modification of metal oxide nanoparticles with phosphonic acid-based ligands was found to afford a robust surface modification and improve the processablity and the quality of nanocomposites. The use of phosphonic-acid modified barium titanate (BaTiO₃) nanoparticles in dielectric nanocomposites dramatically improved the stability of the nanoparticle dispersion and the quality of the nanocomposites. Surface modification of BaTiO₃ nanoparticles allowed high quality nanocomposite thin films in ferroelectric polymer hosts such as poly(vinylidene fluoride-co-hexafluoropropylene) with large volume fractions (up to 50 vol. %), which exhibited a remarkable combination of a high permittvity (35 at 1 kHz) and a high breakdown strength (210 V/µm) leading to a maximum energy storage density of 6.1 J/cm³. The effect of nanoparticle volume fractions on the dielectric properties of this nanocomposite system was investigated and compared with theoretical models. At high volume fraction of nanoparticles, the porosity of the nanocomposites was found to have important role in the dielectric performance. A combined effective medium theory and finite difference simulation was used to model the dielectric properties of high volume fraction dielectric nanocomposites with porosity. These results provide a guideline to optimize the volume fractions of nanoparticles for maximum energy density. Nanocomposites based on phosphonic acid-modified BaTiO₃ nanoparticles can also be used as printable high permittivity dielectrics in organic electronics. High volume fractions (up to 37 vol. %) of phosphonic acid-modified BaTiO₃ nanoparticles dispersed in cross-linked poly(4-vinylphenol) allowed solution-processable high permittivity thin films with a large capacitance density (~50 nF/cm²) and a low leakage current (10 8 A/cm²) suitable as a gate insulator in organic field-effect transistors (OFETs). Pentacene-based OFETs using these nanocomposites showed a low threshold voltage (< -2.0 V) and a large on/off current ratio (Ion/off 104 ~ 106) due to the high capacitance density and low leakage current of the gate insulator.
92

Mesoporous silica/polymer nanocomposites

Liu, Yi 13 November 2009 (has links)
New approaches through grafting initiators onto the surface of inner-wall of mesoporous silica to synthesize polymer inside the nano-channels to obtain mesoporous silica/polymer nanocomposites were developed and investigated. Using the newly developed approach, PMMA was successfully synthesized through free radical polymerization and nylon 6 though in situ anionic ring-opening polymerization inside the nano-channels. The spherical mesoporous silica/PMMA composites we obtained showed a higher degradation temperature and narrower degradation range than pure commercially available PMMA. Spherical PMMA capsules were obtained after the silica network was dissolved with hydrofluoric acid, these pure PMMA spheres had the same thermal properties and morphology as they had with in the composites. The BMS/nylon 6 nanocomposites were spheres with the same diameter as pure BMS. About 50 wt% of the composites was newly synthesized nylon 6. The synthesized nylon 6 was proven to contain both α-form crystallite and γ-form crystallites with covalent bonds with the surface of silica inside the nano-channels.
93

Development of polymer nanocomposites for automotive applications

Chu, Chun 03 November 2010 (has links)
Polymer nanocomposites (PNCs) have gained significant interest because they have outstanding performance that allows cost reduction, weight reduction, and product improvement. This research study focuses on the manufacture and characterization of PNCs in order to explore their potential in automotive applications. More specifically, polypropylene (PP) nanocomposites reinforced with xGnP and nanokaolin were fabricated by manufacturing methods that optimize their performances. Exfoliated graphite nanoplatelets (xGnP) are promising nanofillers that are cost effective and multifunctional with superior mechanical, thermo-mechanical and electrical properties. Nanokaolin is a newly introduced natural mineral mind in Georgia that has not been studied as of now. PNCs reinforced with these two nanofillers were characterized in terms of mechanical, thermo-mechanical, and various other properties, and then compared to talc- reinforced PP composites, which are the current state of the art for rear bumpers used by Honda Motor. Characterization results indicated that xGnP had better performance than talc and nanokaolin. Furthermore, the addition of xGnP introduces electrical conductivity in the PNCs, leading to more potential uses for PNCs in automotive applications such as the ability to be electrostatic painted. In order to fabricate PNCs with a desired conductivity value, there is need for a design tool that can predict electrical conductivity. Existing electrical conductivity models were examined in terms of model characteristics and parameters, and model predictions were compared to the experimental data. The percolation threshold is the most important parameter in these models, but it is difficult to determine experimentally, that is why a correlation between thermo-mechanical properties and electrical conductivity is also investigated in this study.
94

Cellulosic nanocomposites with unique morphology and properties

Lee, Jihoon 12 November 2010 (has links)
Cellulose nanowhiskers reinforced poly(vinyl alcohol)(PVA) nanofiber web is successfully fabricated using electrospinning technique and the mechanical properties of the single electrospun fiber are measured using nanoindentation method. The morphology and mechanical properties of highly aligned electrospun fiber webs are investigated. It is found that the modulus and tensile strength of aligned webs are higher than those of isotropic electrospun fiber webs. Experimental results are compared with a longitudinal Halpin-Tsai model. Ice-templated(IT) cellulose microfibril porous foams are successfully fabricated via unidirectional freezing methods. The morphology and growth mechanism of IT surfaces are investigated successfully using cellulose microfibrils and hydrophillic substrates. By controlling the temperature gradient between cellulose microfibril suspensions and secondary freezing mediums, various surface structures including honey-comb like structures, ellipse-shape channel strcutures, fully developed multichannel structures are obtained. For the honey-comb like patterned surface, high contact angles are observed. On the other hand, for the layered patterned surface, anisotropic wetting properties are observed.
95

Controllable growth of porous structures from co-continuous polymer blend

Zhang, Wei 06 April 2011 (has links)
Due to their large internal surface area, microporous materials have been widely used in applications where high surface activity is desired. Example applications are extracellular scaffolds for tissue engineering, porous substrates for catalytic reaction, and permeable media for membrane filtration, etc. To realize these potential applications, various techniques such as TIPS (thermal induced phase separation), particle leaching, and SFF (solid freeform fabrication) were proposed and investigated. Despite of being able to generate microporous for specific applications, these available fabrication techniques have limitations on controlling the inner porous structure and the outer geometry in a cost-effective manner. To address these technical challenges, a systematic study focusing on the generation of microporous structures using co-continuous polymer blend was conducted. Under this topic, five subtopics were explored: 1) generation of gradient porous structures; 2) geometrical confining effect in compression molding of co-continuous polymer blend; 3) microporous composite with high nanoparticle loading; 4) micropatterning of porous structure; 5) simulation strategy for kinetics of co-continuous polymer blend phase coarsening process.
96

Scalable techniques for the formation of polymer-nanoplatelet hybrid membranes and characterization thereof

Johnson, Justin Ryan 04 November 2010 (has links)
Polymer-nanoplatelet hybrid membranes show promise as the next generation of membranes, but in order to make these realizable, methods to produce these materials on a large scale are necessary. Some authors have successfully produced these types of gas separation membranes. Typically these reports have utilized melt blending and in situ polymerization. Few, however, have utilized solution blending for creating membranes via phase inversion (asymmetric membranes). And to date, there have not been any reports regarding the fabrication of asymmetric membranes containing nanoplatelet filler materials. In this work we have developed a solution-based procedure for the formation of hybrid polymer-nanoplatelet dopes for dense film and asymmetric hollow fiber membrane formation. Dense film membrane studies were used to prove the effectiveness of our exfoliation and dispersion process developed for this work. Permeation measurements showed the hybrid membranes have desirable transport properties that are on par with mathematical model predictions. Additionally, TEM characterization provided strong evidence supporting the efficacy of our preparation procedures to produce an exfoliated system of nanoplatelets. We also showed that these procedures are applicable to different polymer systems (cellulose acetate and Torlon) of commercial relevance. Demonstrating the successful production of dense films set the stage for asymmetric hollow fiber membrane formation. We report the first production of asymmetric hollow fiber membranes containing nanoplatelet fillers; indicating that the process can be applied in a realistic membrane formation platform. These accomplishments serve as the groundwork for future nanocomposite formation.
97

Application of cellulose nanowhisker and lignin in preparation of rigid polyurethane nanocomposite foams

Li, Yang 18 May 2012 (has links)
Cellulose nanowhisker (CNW) prepared by acid hydrolysis of softwood Kraft pulp was incorporated as nanofiller in rigid polyurethane (PU) foam synthesis. The density, morphology, chemical structure, mechanical properties and thermal behavior of the products were characterized. The nanocomposites exhibited better performance especially at high CNW¡¯s content which was probably due to the high specific strength and aspect ratio of CNW, the hydrogen bonding and crosslinking between CNW and polymer matrix, a higher crosslinking density compared to the control, and the function of CNW as an insulator and mass transfer insulator. Lignin polyol was synthesized through oxypropylation and used for rigid PU foam preparation. The density, morphology, chemical structure, compressive property and thermal behavior of the product were characterized. Lingin-based rigid PU foam showed improved compressive property compared to its commercial counterpart. Ethanol organosolv lignin-based PU showed a slightly stronger compressive property than Kraft lignin-based PU. The enhancement was primarily attributed to the rigid phenolic structure and the high hydroxyl functionality of lignin. Lignin-based PU generated more char than common PUs which was possibly related to the better flame retardant property. This study provided an alternative way to valorize the two most abundant biopolymers and resulted in relatively environmentally benign rigid PU nanocomposite foam.
98

Enviromentally benign synthesis and application of some spinel ferrite nanopartilces

Vaughan, Lisa Ann 01 July 2011 (has links)
In this thesis, the commercial viability of the aminolytic synthesis method is explored through robustness, versatility, and waste reduction studies. We report the preparation of metal precursors and the development of a synthetic approach using an aminolytic reaction of metal carboxylates in oleylamine and non-coordinating solvent. Manganese doping in the cobalt ferrites allows for the investigation of the couplings. All the compositions in the series Co1-xMnxFe2O4, 0.0  x  1.0 were synthesized via the aminolytic reaction. The coercivity decreases with increasing Mn2+ concentration due to reducing of high magnetic anisotropy ion (Co2+) content. To our knowledge, this work is the first completed series of Co1-xMnxFe2O4. The method is used to synthesize manganese ferrites dope with chromium. This allows for the investigation of the effects of orbital momentum quantum coupling. All the compositions of MnFe2-xCrxO4, x= 0.0, 0.05, 0.13, 0.25, 0.43, 0.62, and 0.85, were synthesized via the In-situ aminolytic method. Chromium concentration weakens the couplings resulting in the decrease in overall magnetic moment. All by-products can be recycled for re-utilization. The "mother" solution can be used for multiple batches without treatment. Our trials have shown that the reaction could undergo ten reactions using the same solution without scarifying the quality or yield of the product. Finally, an environmental application is explored through the use of iron oxides. Samples of goethite, maghemite, magnetite, and hematite were synthesized and characterized. These nanoparticles were exposed to arsenic and chromium solutions to measure the percent uptake of contaminant by each phase. Adsorption isotherms were plotted to obtain Freundlich parameters. The adsorption constant (K) averages over a 400% increase on literature values. We synthesized hematite and maghemite core-shell particles and exposed them to arsenite and maghemite core-shell particles have the higher removal affinity due to their smaller size.
99

Flammability evaluation of glass fiber reinforced polypropylene and polyethylene with montmorillonite nanoclay additives

Vaddi, Satya. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Title from PDF title page (viewed Feb. 1, 2010). Additional advisors: Derrick R. Dean, Gregg M. Janowski, Selvum (Brian) Pillay (ad hoc). Includes bibliographical references (p. 76-82).
100

Percolation study of nano-composite conductivity using Monte Carlo simulation

Bai, Jing. January 2009 (has links)
Thesis (M.S.)--University of Central Florida, 2009. / Adviser: Kuo-Chi Lin. Includes bibliographical references (p. 84-92).

Page generated in 0.1222 seconds