Spelling suggestions: "subject:"nanocrystals."" "subject:"nanaocrystals.""
91 |
Generation of Titanium Dioxide Parts using Cellulose Nanocrystal Aerogel Hard TemplatesCuster, Faulkner Paine 27 January 2021 (has links)
This project studies the generation of crystalline mesoporous structured titanium dioxide (TiO2) using cellulose nanocrystal (CNC) aerogel hard templates for photocatalytic and biomaterial applications. Suspensions of CNCs in water varying in solid loading from 20 mg/mL to 100 mg/mL were prepared and frozen at three different temperatures (-20 °C, -40 °C, or -80 °C) using four combinations of hollow cylindrical molds and mold plates with different thermal conductivities (stainless-steel or glass) placed on different heat conductive and insulative substrates (aluminum, polystyrene foam and cardboard). Frozen samples were then freeze dried to sublimate the ice and render a multiscale and mesoporous structure with a variety of microstructural features, including lamellar sheeting, flakes, ribbons, or striations. Ceramic green bodies are then produced by reacting Titanium isopropoxide with water through several different processes to generate amorphous TiO2 either in-situ in the CNC aerogel or as a suspension for infiltration under varying pressure. Green bodies are dried at room temperature, and the extent of ceramic coating of the template is visually determined using SEM imaging. Once dried, crystalline TiO2 are produced through a two-step heat treatment with a CNC burnout at 270 °C and crystallization and sintering at 500 °C, 600 °C, or 1000 °C. The final crystallinity and phase composition is examined using XRD, and the final porosity is determined using BET. Results have shown the ability to satisfactorily coat aerogels under 10 mm in one dimension with TiO2. These samples have been successfully heat-treated to produce both anatase and rutile phase TiO2 while maintaining the macrostructure of the CNC aerogel. Multiscale porosity has been achieved, and samples heat treated at 1000 °C have achieved structural integrity. / Master of Science / Titanium Dioxide (TiO2) is a common material in today's world used in a range of applications including pigments, sunscreens, and thin films. It is a chemically and physically stable material, making it ideal for some biomedical applications including bone and cell growth scaffolds. TiO2 is also photocatalytic and has been used in photovoltaic cells and water decontamination systems to take advantage of this property. While TiO2 has been effectively implemented in these applications, the multiscale, controllable porous structure required for these applications has proven complicated to generate. To help improve this process, cellulose nanocrystal (CNC) aerogels were investigated as tunable hard templates for porous TiO2. Controlled ice templating through alteration of the freezing conditions followed by freeze drying provided a reliable method for the production CNC aerogels with repeatable micro and macrostructures. Testing multiple methods for coating the template in TiO2 led to the successful replication of the template in a ceramic part. The final TiO2 exhibited multiscale porosity with micro and macrostructures matching those of the CNC aerogel template. These parts can be tailored to fit a desired application by controlling the structure of the aerogel.
|
92 |
Synthesis and Characterization of Magnetic II-VI NanoparticlesTracy, Nicholas Alan 25 August 2006 (has links)
Magnetic semiconductor nanocrystals are being studied for their potential application in the field of spintronics as spin-injectors for spin-based transistors and spin-based storage elements for nonvolatile memories. They also have a number of biomedical engineering applications including contrast enhancing agents for magnetic resonance imaging (MRI). In this study, we present a synthesis route to grow colloidal II-VI magnetic nanoparticles at room temperature with easily handled, relatively non-toxic source materials. CoSe and CrSe nanocrystals were synthesized in an aqueous solution where gelatin is used to retard the reaction. Characterization of the nanocrystals was done through transmission electron microscope (TEM) imaging and UV-Vis absorption spectroscopy. Spin-carrier relaxation times were determined using a superconducting quantum interference device (SQUID) magnetometer. / Master of Science
|
93 |
Photophysical Properties of Manganese Doped Semiconductor NanocrystalsHazarika, Abhijit January 2015 (has links) (PDF)
Electronic and optical properties of semiconducting nanocrystals, that can be engineered and manipulated by various ways like varying size, shape, composition, structure, has been a subject of intense research for more than last two decades. The size dependency of these properties in semiconductor nanocrystals is direct manifestation of the quantum confinement effect. Study of electronic and optical properties in smaller dimensions provides a platform to understand the evolution of fundamental bulk properties in the semiconductors, often leading to realization and exploration of entirely new and novel properties. Not only of fundamental interests, the semiconductor nanocrystals are also shown to have great technological implications in diverse areas. Besides size tunable properties, introduction of impurities, like transition metal ions, gives rise to new functionalities in the semicon-ductor nanocrystals. These materials, termed as doped semiconductor nanocrystals, have been the subject of great interest, mainly due to the their interesting optical properties. Among different transition metal doped semiconductor nanocrystals, manganese doped systems have drawn a lot on attention due to their certain advantages over other dopants. One of the major advantages of Mn doped semiconductor nanocrystals is that they do not suffer from the problem of self-absorption of emission, which quite often, is consid-ered detrimental in their undoped counterparts. The doped nanocrystals are known to produce a characteristic yellow-orange emission upon photoexcitation of the host that is relatively insensitive to the surface degradation of the host. This emission, originating from an atomic d-d transition of Mn2+ ions, has been a subject of extensive research in the recent past. In spite of the spin forbidden nature of the specific d-d transition, namely 6A1 −4 T1, these doped nanocrystals yield intense phosphorescence. However, one major drawback of utilizing this system for a wide range application has been the substantial inability of the community to tune the emission color of Mn-doped systems in spite of an intense effort over the years; the relative constancy of the emission color in these systems has been attributed to the essentially atomic nature of the optical transition involving localized Mn d levels. Interestingly, however, the Mn emission has a very broad spectral line-width in spite of its atomic-like origin. While the long (∼ 1 ms) emission life-time of the de-excitation process is well-studied and understood in terms of the spin and orbitally forbidden nature of the transition, there is little known concerning the process of energy transfer to the Mn from the host in the excitation step. In this thesis, we have studied the ultrafast dynamic processes involved in Mn emission and addressed the issues related to its tunability and spectral purity.
Chapter 1 provides a brief introduction to the fundamental concepts relevant to the studies carried out in the subsequent chapters of this thesis. This chapter is started with a small preview of the nanomaterials in general, followed by a discussion on semiconducting nanomaterials, evolution of their electronic structure with dimensions and size as well as the effect of quantum confinement on their optical properties. As all the semiconducting nanomaterials studied in the thesis are synthesized via colloidal synthesis routes, a separate section is devoted on colloidal semiconducting nanomaterials, describing various ways of modifying or tuning their optical properties. This is followed by an introduction to the important class of materials “doped semiconductor nanocrystals”. With a general overview and brief history of these materials, we proceed to discuss about various aspects of manganese doped semiconductor nanocrystals in great details, highlighting the origin of the manganese emission and the associated carrier dynamics as well as different reported synthetic strategies to prepare these materials. The chapter is closed with the open questions related to manganese doped semiconductor nanocrystals and the scope of the present work.
Chapter 2 describes different experimental and theoretical methods that have been employed to carry out different studies presented in the thesis. It includes common experimental techniques like UV-Vis absorption spectroscopy, steady-state and time-resolved photoluminescence spectroscopy used for optical measurements, X-ray diffraction, trans-mission electron microscopy and atomic absorption spectroscopy used for structural and elemental analysis. Experimental tools to perform special studies like transient absorption and single nanocrystal spectroscopy are also discussed. Finally, theoretical fitting method used to analyse various spectral data has been discussed briefly.
Chapter 3 deals with the dynamic processes involved in the photoexcitation and emission in manganese doped semiconductor nanocrystals. For this study, Mn doped ZnCdS alloyed nanocrystal has been chosen as a model system. There are various radiative and nonrdiative recombination pathways of the photogenerated carriers and they often compete with each other. We have studied the dynamics of all possible pathways of carrier relaxation, viz. excitonic recombination, surface state emission and Mn d-d transition. The main highlight of this chapter is the determination of the time-scale to populate surface states and the Mn d-states after the photoexcitation of the host. Employing femtosecond pump-probe based transient absorption study we have shown that the Mn dopant states are populated within sub-picosecond of the host excitation, while it takes a few picoseconds to populate the surface states. Keeping in mind the typical life-time of the excitonic emission (∼ a few ns), the ultra-fast process of energy transfer from the host to the Mn ions explains why the presence of Mn dopant ions quenches the excitonic as well as the surface state emissions so efficiently.
Chapter 4 presents a study of manganese emission in ZnS nanocrystals of different sizes. By varying the size of the ZnS host nanocrystal, we show that one can tune the Mn emission over a limited range. In particular, with a decrease in host size, the Mn emission has been observed to red-shift. We have attributed this shift in Mn emission to the change in the ratio of surface to bulk dopant ions with the variation of the host size, noting that the strength of the ligand field at the Mn site should depend on the position of the Mn ion relative to the surface due to a systematic lattice relaxation in such nanocrystals. The ligand field affects the emission wavelength directly by controlling the splitting of the t2 and e levels of Mn2+ ions. The surface dopant ions experience a strong ligand field due to distorted tetrahedral environment which leads to larger splitting of these t2 and e states. We further corroborated these results by performing doping concentration dependent emission and life-time studies.
In Chapter 5 addresses two fundamental challenges related to manganese photolumines-cence, namely the lack of a substantial emission tunability and presence of a very broad spectral width (∼ 180-270 meV). The large spectral width is incompatible with atomic-like manganese 4T1 −6 A1 transition. On the other hand, if this emission is atomic in nature, it should be relatively unaffected by the nature of the host, though it can be manipulated to some extent as discussed in Chapter 3. The lack of Mn emission tunability and spectral purity together seriously limit the usefulness of Mn doped semiconductor nanocrystals. To understand why the Mn emission tunability range is very limited (typically 565-630 nm) and to understand the true nature of this emission, we carried out single nanocrystal imaging and spectroscopy on Mn doped ZnCdS alloyed nanocrystals. This study reveals that Mn emission, in fact, can vary over a much wider range (∼ 370 meV) and exhibits widths substantially lower (∼ 60-75 meV) than reported so far. We explained the occur-rence of Mn emission in this broad spectral range in terms of the possibility of a large number of symmetry inequivalent sites resulting from random substitution of Cd and Zn ions that leads to differing extent of ligand field contributions towards the splitting of Mn d-levels. The broad Mn emission observed in ensemble-averaged measurements is the result of contribution from Mn ions at different sites of varying ligand field strengths inside the NC.
Chapter 6 presents a synthetic strategy to strain-engineer a nanocrystal host lattice for a controlled tuning of the ligand field effect of the doped Mn sites. It is realized synthesizing a strained quantum dot system with the structure ZnSe/CdSe/ZnSe. A larger lattice parameter of CdSe compared to that of ZnSe causes a strain field that is maximum near the interface, gradually decreasing towards the surface. We control the positioning of Mn dopant ions at different distances from the interface, thereby doping Mn at different predetermined strain fields. With the help of this strain engineering, we are able to tune Mn emission across the entire range of the visible spectrum. This strain induced tuning of Mn emission is accompanied by life-times that is dependent on the emission energy which has been explained in terms of perturbation effect on the Mn center due to the strain generated inside the quantum dot. The spectacular emission tuning has been explained by modelling the quantum dot system as an elastic continuum containing three distinct layers under hydrostatic pressure. From this modelling, we found that the strain is max-imum at the interface and decreases continuously as one goes away from the interface. We also show that the Mn emission maximum red shifts with increasing distance of the dopants from the maximum strained region.
In summary, we have performed a study on the photophysical processes in manganese doped semiconductor nanocrystals. We have emphasized in understanding of different dynamic processes associated with the manganese emission and tried to understand the true nature of manganese emission in a nanocrystal. This study has brought out some new aspects of manganese emission and opened up possibilities to tune and control manganese emission by proper design of the host material.
|
94 |
CdTe/CdSe/CdTe heterostructure nanorods and I-III-VI₂ nanocrystals: synthesis and characterizationKoo, Bonil 21 June 2010 (has links)
Semiconductor nanocrystals are interesting candidates as new light-absorbing materials for photovoltaic (PV) devices. They can be dispersed in solvents and cheaply deposited at low-temperature on various substrates. Also, the nanocrystals have unique optical properties depending on their size due to the quantum size effect and moreover it is easy to uniformly control their stoichiometry. CdTe/CdSe/CdTe heterostructure nanorods and I-III-VI₂ nanocrystals were selected to synthesize and investigate in order to utilize the benefits of colloidal nanocrystals described above. Colloidal nanorods with linear CdTe/CdSe/CdTe heterojunctions were synthesized by sequential reactant injection. After CdTe deposition at the ends of initially formed CdSe nanorods, continued heating in solution leads to Se-Te interdiffusion across the heterojunctions and coalescence to decreased aspect ratio. The Se-Te interdiffusion rates were measured by mapping the composition profile using nanobeam energy dispersive X-ray spectroscopy (EDS). The rate of nanorod coalescence was also measured and compared to model predictions using a continuum viscous flow model. The synthetic method of monodisperse chalcopyrite (tetragonal) CuInSe₂ nanocrystals was also developed. The nanocrystals have trigonal pyramidal shape with one polar and three non-polar surface facets. When drop-cast onto carbon substrates, the nanocrystals self-assemble into close-packed monolayers with triangular (honeycomb) lattice structure. Moreover, the effect of excess Cu precursor (CuCl) was studied for the formation of monodisperse trigonal pyramidal CuInSe₂ nanocrystals. The formation mechanism of monodisperse trigonal pyramidal CuInSe₂ nanocrystals was suggested with regard to excess amount of CuCl precursor, based on the nucleationgrowth model of colloidal nanocrystal formation. A new wurtzite phase of CuInS₂, CuInSe₂, and Cu(InxGa1-x)Se₂ (CIGS) was observed in nanocrystals synthesized by heating metal precursors and Se-(or S-)urea in alkylamine. X-ray diffraction (XRD) showed the predominant phase to be wurtzite (hexagonal) instead of chalcopyrite (tetragonal). High resolution transmission electron microscopy (TEM), however, revealed polytypism in the nanocrystals, with the wurtzite phase interfaced with significant chalcopyrite domains. / text
|
95 |
Synthesis and characterization of silicon nanowires, silicon nanorods, and magnetic nanocrystalsHeitsch, Andrew Theron 05 October 2010 (has links)
Silicon nanowires, silicon nanorods, and magnetic nanocrystals have shown interesting size, shape, mechanical, electronic, and/or magnetic properties and many have proposed their use in exciting applications. However, before these materials can be applied, it is critical to fully understand their properties and how to synthesize them economically and reproducibly. Silicon nanowires were synthesized in high boiling point ambient pressure solvents using gold and bismuth nanocrystals seeds and trisilane as the silicon precursor. Reactions temperatures as low as 410°C were used to promote the solution-liquid-solid (SLS) growth of silicon nanowires. The silicon nanowires synthesis was optimized to produce 5 mg of silicon nanowires with average diameters of 30 nm and lengths exceeding 2 [mu]m by adjusting the silicon to gold ratio in the injection mixture and reaction temperature. Silicon nanorods were synthesized using a solution-based arrested-SLS growth approach where gold seeds, trisilane, and a dodecylamine were vital to the success. Dodecylamine was found to prevent gold seed coalescence at high temperatures -- creating small diameter rods -- and bond to the crystalline silicon surface -- preventing silicon nanorod aggregation. Furthermore, an etching strategy was developed using an emulsion of aqua regia and chloroform to remove the gold seeds from the silicon nanorods tip. A thin silicon shell surrounding the gold seed of the silicon nanorod was subsequently observed. Multifunctional colloidal core-shell nanoparticles of iron platinum or iron oxide encapsulated in fluorescent dye doped silica shells were also synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with a uniform silica shell using a microemulsion approach. These colloidal heterostructures have the potential to be used as dual-purpose tags, exhibiting a fluorescent signal that could be combined with enhanced magnetic resonance imaging contrast. Compositionally-ordered, single domain, antiferromagnetic L1₂ FePt₃ and ferromagnetic L1₀ FePt nanocrystals were synthesized by coating colloidally-grown Pt-rich or stoichiometricly equal Fe-Pt nanocrystals with thermally-stable SiO₂ and annealing at high temperature. Without the silica coating, the nanocrystals transform predominately into the L1₀ FePt phase due to interparticle diffusion of Fe and Pt atoms. Magnetization measurements of the L1₂ FePt₃ nanocrystals revealed two antiferromagnetic transitions near the bulk Neél temperatures of 100K and 160K. Combining L1₂ FePt₃ nanocrystals with L1₀ FePt nanocrystals was found to produce a constriction in field-dependent magnetization loops that has previously been observed near zero applied field in ensemble measurements of single domain silica-coated L1₀ FePt nanocrystals. Dipole interactions between FePt@SiO₂ nanoparticles with varying SiO₂ shell thickness was also explored. / text
|
96 |
STM/STS and BEES Study of NanocrystalsShao, Jianfei 11 April 2006 (has links)
This work investigates the electronic properties of very small gold and semiconductor particles using Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Ballistic Electron Emission Spectroscopy (BEES). Complementary theoretical works were also performed. The first theoretical work was to calculate the quantized states in the CdS/HgS/CdS quantum-well-quantum-dot nanocrystals. An eight-band envelope function method was applied to this system. This method treats exactly the coupling between the conduction bands, the light-hole bands, the heavy-hole bands, and the spin-orbit split bands. The contributions of all other bands were taken into account using second order perturbation theory.
Gold nanocrystals with diameters of 1.5 nm have discrete energy levels with energy spacings of about 0.2 eV. These values are comparable to the single electron charging energy, which was about 0.5 eV in our experimental configuration. Since bulk gold doesnt have an energy gap, we expect the electron levels both below and above the Fermi level should be involved in the tunneling. Measured spectroscopy data have rich features. In order to understand and relate these features to the electronic properties of the nanocrystals, we developed a tunneling model. This model includes the effect of excited states that have electron-hole pairs. The relaxation between discrete electron energy levels can also be included in this model. We also considered how the nanocrystals affect the BEES current.
In this work an ultra-high vacuum and low-temperature STM was re-designed and rebuilt. The BEEM/BEES capabilities were incorporated into the STM. We used this STM to image gold nanocrystals and semiconductor nanocrystals. STS and BEES spectra of gold nanocrystals were collected and compared with calculations.
|
97 |
Enhancing the sensitivity and specificity of piezoelectric quartz crystal sensor by nano-gold amplification and molecularly imprintingtechnologies蔡紫珊, Choy, Tsz-shan, Jacqueline. January 2007 (has links)
published_or_final_version / abstract / Chemistry / Master / Master of Philosophy
|
98 |
Synthesis and characterization of nanostructured metallic zinc and zinc oxideMuley, Amol. January 2007 (has links)
published_or_final_version / abstract / Mechanical Engineering / Master / Master of Philosophy
|
99 |
Détermination par nano-EBIC et par simulation de Monte-Carlo de la longueur de diffusion des porteurs minoritaires : application à des structures contenant des nanocristaux de germanium / Determination by nano-EBIC and Monte-Carlo simulation of the diffusion length of minority carriers : application to structures containing Ge nanocrystalsDoan, Quang-Tri 09 December 2011 (has links)
L’objectif de ce travail de thèse est d’étudier certaines propriétés locales de structures contenant des nanocristaux de Ge sur leur surface par utilisation de la technique nano-EBIC(courant induit par bombardement électronique et collecté par un nano-contact). La particularité de cette technique qui utilise le même principe que la technique EBIC classique est l’utilisation d’une pointe conductrice d’un AFM (microscope à force atomique) à la place d’une électrode standard. Nous nous sommes intéressés à la détermination de la longueur de diffusion effective (Leff) et l’étude de sa variation en fonction de paramètres tels que l’énergie primaire et la taille des nanocristaux. Leff augmente pour les faibles énergies primaires, passe par un maximum qui dépend de la taille des nanocristaux, puis diminue pour les énergies élevées. Ce comportement de l’évolution de Leff a été expliqué en chapitre 2. Cependant, ce résultat n’a jamais été observé auparavant. C’est pourquoi, nous avons complété ce travail par une étude basée sur la simulation Monte-Carlo, où l’effet de plusieurs paramètres a été analysé. Parmi les paramètres étudiés, on cite la taille et la forme du nano-contact (ou plus précisément la taille de la nano-zone de déplétion qui se forme sous le contact), la vitesse de recombinaison en surface et l’énergie primaire. La simulation donne le même comportement de variation de Leff que dans le cas expérimental. / The objective of this work is to study certain local properties of structures containing on their surface Ge nanocrystals by using the nano-EBIC (Electron beam induced current collected by a nano-contact). The peculiarity of this technique which uses the same principle as the classical EBIC technique is the use of a conductive AFM (atomic force microscope) tip instead of a standard electrode. We were interested in the determination of the effective diffusion length (Leff) and the study of its variation according to parameters such as the primary energy and the size of nanocrystals. Leff increases for weak energies, reaches a maximum which depends on the nanocrystal size, then decreases for high energies. This behavior of the evolution of Leff was explained in chapter 2. However, this result has never been reported previously. That is why we completed this work by a study based on the Monte-Carlo simulation, where the effect of several parameters was analyzed. Among the parameters studied, we quote the size and the shape of the nano-contact (or more exactly the size of the depletion nano-zone formed under the contact), the surface recombination velocity and the primary energy. The simulation gives the same behavior of Leff variation than the experimental case.
|
100 |
Electronic properties of low dimensional carbon materialsSanders, Kirsty Gail January 2016 (has links)
A Dissertation submitted to the Faculty of Science, University of the Witwatersrand,
Johannesburg, in ful lment of the requirements for the degree of Master of Science. Johannesburg 2016. / Low dimensional carbon systems are of immense interest in condensed matter physics
due to their exceptional and often startling electric and magnetic properties. In this
dissertation we consider two of these materials - graphene and nanocrystalline diamond.
The effect of synthesis parameters on the quality of graphene is examined and
it is found that controlling the partial pressure of the synthesis gases plays a critical
role in determining the quality of the sample. Superconductivity in Boron doped
nanocrystalline diamond (B-NCD) is considered and weak localisation along with a
Berezinsky-Kosterlitz-Thouless (BKT) transition is identified in the samples. Furthermore
we explore theoretically the problem of electric transport through a double quantum
dot system coupled to a nanomechanical resonator. We find resonant tunnelling
when the difference between the energy levels of the dots equals an integer multiple of
the resonator frequency, and that while initially increasing the electron phonon coupling
(g) increases the current through the sample further increase in g inhibits electric
transport through the quantum dots. / LG2017
|
Page generated in 0.2187 seconds