• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les nanodisques comme outil pour l'étude de protéines membranaires intégrales / Nanodiscs as a tool for the structural studies of membrane protein

Huon de Kermadec, Yann 27 November 2015 (has links)
Les protéines membranaires représentent environ 2/3 des cibles thérapeutiques. Le développement de nouveaux médicaments est toutefois limité par l'absence de données structurales pour de nombreuses protéines. Les protéines membranaires s'avèrent en effet difficiles à manipuler et à maintenir en solution ce qui complique leur étude structurale. Les protéines sont en général solubilisées grâce à des surfactants comme les détergents, les amphipols, les hémifluorés et les peptergents. Il est aussi possible de les étudier dans des conditions plus physiologiques en les insérant dans des membranes lipidiques telles que des liposomes, des bicelles, ou des nanodisques.Les nanodisques sont des particules protéolipidiques autoassemblées, composées de protéines d'assemblages et de lipides, qui constituent un système de membranes modèles très prometteur permettant de solubiliser des protéines membranaires dans un milieu dépourvu de détergent. D'autres avantages sont aussi la variabilité de la constitution en lipides et l'accessibilité des deux côtés de la membrane.Dans le cadre de ma thèse, j'ai mis au point l'insertion de plusieurs protéines membranaires en nanodisques afin de permettre leur caractérisation fonctionnelle, biophysique et structurale. Nous avons en particulier étudié le transporteur ABC BmrA impliqué dans la résistance aux antibiotiques et cherché à identifier les changements conformationnels de la protéine en nanodisques par microscopie électronique. Les interactions de la protéine YedZ, un homologue de NADPH oxydases, avec ses partenaires solubles potentiels ont été étudiés par différentes méthodes telles que le pontage chimique, la résonance plasmonique de surface et la spectrométrie de masse native. En parallèle, le mécanisme d'assemblage des nanodisques a été investigué. Une interaction entre les protéines d'assemblages et des cations divalents a été mise en évidence. Cette interaction a un effet sur l'oligomérisation de la protéine d'assemblage mais également sur l'homogénéité des nanodisques. Ces observations nous ont permis d'améliorer les conditions de préparation des nanodisques, condition déterminante pour le succès de nombreuses approches structurales. Nous avons pu en particulier explorer la possibilité de cristalliser ces particules en vue d'études cristallographiques. / Membrane proteins represent around 2/3 of therapeutic targets. However, the development of new drugs is hampered by the lack of structural data for many proteins. Membrane proteins are indeed difficult to handle and to maintain stable in solution, which complicates their study by structural methods. Proteins are usually stabilized by surfactants like detergents, amphipols, hemifluorinated compounds and peptergents. It is also possible to study those proteins in an environment mimicking their native conditions by incorporating them in lipid membranes such as liposomes, bicelles or nanodiscs.Nanodiscs are self-assembled proteolipidic particles, composed of a scaffold protein and lipids. This technology is a top-notch model membrane system, which provides a detergent free environment to study membrane proteins in solution. Further advantages are the possibility to vary the lipid composition and the accessibility of the incorporated protein from both sides of the membrane.During my PhD project, I have achieved the insertion of several membrane proteins into nanodiscs for functional, biophysical and structural characterizations. In particular, we have studied Bmra, an ABC transporter involved in multidrug resistance and tried to identify the conformational changes of the protein in nanodiscs by electron microscopy. The interaction of YedZ, a NADPH oxidase homologue, with potential soluble partners has been studied by various methods such as cross-linking, surface plasmon resonance and native mass spectrometry. In parallel, the mechanism of nanodiscs assembly has been investigated. An interaction between the scaffold protein and divalent cations has been revealed. This interaction influences the oligomerization of the scaffold protein but also the nanodiscs homogeneity. Those observations allowed us to improve the preparation of the nanodiscs, which was an essential step torward the success of many structural approaches. In particular, we were able to explore their accessibility to protein crystallography.
2

Étude structurale d'un système d'efflux tripartite bactérien MexAB-OprM impliqué dans la résistance aux antibiotiques chez Pseudomonas aeruginosa. / Structural study of a bacterial tripartite efflux pump system, MexAB-OprM, involved in antibiotic resistance in Pseudomonas aeruginosa.

Salvador, Dimitri 20 December 2018 (has links)
L'utilisation d'antibiotiques pour lutter contre les infections bactériennes a favorisé l'émergence de souches résistantes. Comprendre les mécanismes de résistance est crucial pour lutter contre ces pathogènes. Cette thèse propose une étude structurale d'une pompe à efflux multidrogues de Pseudomonas aeruginosa qui se compose d'un transporteur MexB, d'une protéine canal OprM et d'une protéine adaptateur MexA. Les partenaires du complexe tripartite stabilisés en nanodisques ont permis la formation du complexe in vitro. L'optimisation des conditions de production du complexe a permis de cribler les différents paramètres régissant son assemblage. L'étude structurale par cryo-ME révèle un complexe de 30 nm de long en conformation de repos. L'étude de la stabilisation des protéines membranaires par nanodisques a conduit au développement d'un système minimal, débarrassé des lipides. Ce système minimal a révélé la nécessité d'une phase lipidique autour de MexB pour l'assemblage du complexe. / Antibiotics use against bacterial infections has led to the emergence of resistance. Understanding the mechanisms underlying resistance to antibiotics is critical to fight against these pathogens. This thesis presents a structural study of a multidrug efflux pump in Pseudomonas aeruginosa, composed of a transporter MexB, an exit duct OprM and an adaptor protein MexA. The proteins reconstituted in nanodiscs allowed tripartite complex formation in vitro. Optimization of yield led to the identification of key parameters governing complex assembly. Structural cryo-EM study revealed a 30 nm long complex in a resting state. The study of membrane protein stabilization by nanodisks led to the development of a minimal system devoid of lipids. This system showed a lipid phase around MexB is required for complex formation.
3

Études et applications des propriétés plasmoniques des réseaux nanostructurés

Couture, Maxime 08 1900 (has links)
Cette thèse porte sur l’étude des propriétés plasmoniques de réseaux nanostructurés dans le but de développer des applications de bioanalyse. L'intérêt de travailler avec ces structures est dû à leur grande sensibilité de surface, leur facilité de fabrication et leur simplicité d'analyse par spectrophotométrie en transmission. L'objectif était de fabriquer un dispositif capable d'effectuer du criblage à haut débit pour des fins biomédicales. Le premier objectif de la thèse porte sur l’étude des propriétés plasmoniques des réseaux de nanotrous. Une compréhension approfondie de ces structures a permis d’exploiter efficacement leur performance pour des applications de bioanalyse plasmonique. Une solution analytique fut établie pour étudier les modes de diffractions des polaritons de plasmons de surface d’onde de Bloch (BW-SPP). Cette équation a permis de corroborer les observations expérimentales avec des calculs théoriques par rapport au couplage plasmonique des réseaux de nanotrous. De plus, la variation de l'angle d'incidence a permis de déplacer la fréquence à laquelle les modes plasmoniques sont excités. Il était donc possible d'ajuster la position des BWSPP de façon à maximiser un couplage à une longueur d'onde désirée. Cet effet a été exploité avec la technique d'amplification de surface de diffusion Raman exaltée (SERS). Finalement, la sensibilité en surface de réseaux de nanotrous a été amplifiée selon l’angle d’excitation en transmission. Ce gain en sensibilité permet la détection de protéines d’IgG humain pour des basses concentrations de l’ordre du nanomolaire (nM). Le second objectif de la thèse traite du développement d’un lecteur multipuits couplé avec la technologie des réseaux de nanotrous afin de créer une plateforme de détection plasmonique pour du criblage à haut débit. Cet instrument offre une analyse en transmission d’échantillons nanostructurés à l’aide d’une plaque 96-puits pour des angles d’incidence allant jusqu’à 50°. Une nouvelle méthode de microfabrication de réseaux de nanotrous par photolithographie fut établie. Cette technique a permis de fabriquer des réseaux de nanotrous sur de grandes surfaces avec uniformité. L’efficacité du système fut démontrée pour la détection de protéines d’IgG humain, du méthotrexate (MTX) et le criblage d’anticorps de l’antigène prostatique spécifique (PSA). Le dernier volet de la thèse discute de l’étude des propriétés plasmoniques de réseaux de nanodisques recouverts d’un film d’or pour amplifier plus fortement la sensibilité des capteurs plasmoniques. Cette section de la thèse a démontré la performance des réseaux de nanodisques en tant que capteur plasmonique. En effet, les réseaux de nanodisques ont l’avantage d’exciter un mode de Bragg (BM, Bragg modes) en transmission directe générant une bande plasmonique fine ayant un facteur de mérite (FOM, figure of merit) élevé (sensiblité/réponse plasmonique). L’excitation de ces structures en transmission directe a simplifié énormément l’utilisation du robot multipuits par l’excitation à incidence normale tout en offrant une FOM supérieure aux réseaux de nanotrous. Pour continuer, des simulations 3D et une image Raman du signal SERS des structures ont démontré que le champ plasmonique des BM est grandement confiné autour des nanodisques. Ce confinement du champ plasmonique des réseaux de nanodisques à générer un facteur d’amplification SERS de l’ordre de 107. En somme, cette thèse démontre une étude des propriétés plasmoniques de réseaux nanostructurés pour des applications de bioanalyse par criblage à haut débit. Les études rapportées dans cette thèse ont prouvés que le champ plasmonique des réseaux de nanotrous peut être contrôlé afin d’amplifier leur sensibilité. De plus, la thèse rapporte la première plateforme de bioanalyse plasmonique utilisant un lecteur multipuits. Finalement, la fabrication de structures plasmoniques composés de nanodisques d’or a permis de mettre en évidence des propriétés optiques qui peuvent être mises à profit pour des mesures optiques ultras sensibles. / This thesis describes the plasmonic properties of nanostructured arrays towards development of biosensing applications. These structures exhibited several advantages such as high surface sensitivity, ease of microfabrication and simple excitation setup in transmission spectroscopy. The goal was to design a plasmonic device able to achieve high throughput analysis for biomedical purposes. The first section of the thesis covers a study of the plasmonic properties of nanohole arrays. An analytical solution was derived to assess plasmonic properties of the diffraction modes of Bloch-Wave surface plasmon polaritons (BW-SPP). Tuning of the excitation angle allowed for a precise control of the plasmonic signal’s position and an optimal coupling at a specific wavelength. This feature of nanohole arrays was demonstrated for applications in surface-enhanced Raman scattering (SERS). Finally, this section described the enhancement of the surface sensitivity of nanohole arrays through variation of the excitation angle in transmission. Such enhancement of the sensitivity allowed for detection of the concentration of human IgG proteins in the low nanomolar range. The second section of the thesis discusses the development of a multi-well plate reader coupled with the nanohole arrays technology. A custom-built plasmonic reader, designed at University of Montreal, allowed analysis of plasmonic structures in transmission with a 96-well plate for excitation where the incident angle is up to 50° relative to normal. A novel microfabrication technique of nanohole arrays, based on photolithography, is described. This technique allowed fabrication of nanohole arrays on a large scale with great surface uniformity. The performance of the plasmonic reader is demonstrated for sensing of human IgG proteins, methotrexate (MTX) and screening of prostate specific antigen (PSA) antibodies. The final section of the thesis describes studies on the plasmonic properties of nanodisk arrays coated with a gold film. This section described the performance of nanodisk arrays for plasmonic sensing. This structure benefited from the excitation of Bragg modes (BM) in direct transmission, which generated a sharp plasmonic band with a high figure of merit (FOM). The excitation of nanodisk arrays in direct transmission simplified the design of the plasmonic reader while providing a greater FOM than nanohole arrays. Furthermore, 3D simulations and a Raman image of the nanodisk arrays’ SERS intensity showed the confinement of the plasmonic field of the BM at the edges of the nanodisk. Such confinement of the plasmonic field of nanodisk arrays led to high SERS enhancements to a factor of 10^7. In summary, this thesis studied the plasmonic properties of nanostructured arrays towards development of applications for high throughput biosensing. These studies proved that the plasmonic field of nanohole arrays can be tuned to enhance their surface sensitivity. Furthermore, the thesis revealed the first plasmonic sensing platform using a multiwell plate reader. Finally, the thesis describes a novel plasmonic structure with outstanding optical properties; the gold coated nanodisk arrays.
4

Développement et caractérisation d'outils immunologiques dirigés contre des récepteurs membranaires d'intérêt thérapeutique / Development and characterization of immunological tools directed against membrane proteins of therapeutic interest

Hartmann, Lucie 16 May 2019 (has links)
Les Récepteurs Couplés aux Protéines G (RCPG) constituent la plus grande famille de protéines membranaires chez l’Homme, et leur implication dans un grand nombre de processus physiologiques justifie pleinement l’intérêt de leur étude. Les anticorps spécifiques de ces récepteurs sont des outils polyvalents à haute valeur ajoutée, qui restent toutefois encore trop rarement disponibles, notamment en raison des difficultés techniques posées par leur génération. Ce manuscrit présente la mise au point d’une méthode d’immunisation alternative et innovante, mettant en jeu des particules virales recombinantes dérivées du Virus de la Forêt de Semliki (SFV) codant pour le récepteur d’intérêt. Appliquée au récepteur de l’adénosine A2A humain, l’immunisation permet d’engendrer la surexpression de celui-ci à la surface des cellules de l’animal infecté, et de provoquer l’apparition d’une réponse immunitaire. Cette approche permet d’une part de générer un sérum polyclonal de souris spécifique au récepteur, et ouvre donc une nouvelle voie pour l’obtention d’anticorps monoclonaux murins. Elle semble d’autre part prometteuse pour la génération de nanobodies. / G Protein Coupled Receptors (GPCRs) constitute the largest membrane protein family represented in the human genome. Their involvement in a wide number of biological processes fully supports their study. GPCR-targeting antibodies are versatile and valuable tools, which remain scarcely available, chiefly because their generation is a challenging process. This thesis presents an alternative and innovative strategy in which recombinant Semliki Forest Virus (SFV) particles coding for the receptor of interest are used as immunogens. When applied to the human version of the Adenosine A2A receptor, this method enables to cause the receptor’s overexpression at the surface of the infected animal cells, which generates an immune response. This strategy enables to raise receptor-specific mouse polyclonal serum. It opens a new path towards the generation of monoclonal mouse antibodies. Additionally, it seems to also be a promising approach to develop nanobodies.
5

Études structurales par cryo-microscopie électronique d’un système d’efflux multi-drogues bactérien, impliqué dans la résistance aux antibiotiques / Cryo-electron microscopy structural studies of a bacterial multi-drug efflux pump involved in antibiotic resistance

Glavier, Marie 26 November 2018 (has links)
L'apparition croissante de bactéries pathogènes multi-résistantes à la plupart des antibiotiques disponibles apparaît comme un problème mondial de santé publique. Malheureusement, un usage excessif à la fois en médecine humaine et animale a conduit à l’apparition de souches multi-résistantes à la plupart des antibiotiques disponibles sur le marché. Il est donc urgent de mieux comprendre les mécanismes mis en place par les bactéries pour résister aux antibiotiques afin de trouver des solutions pour combattre les souches multi-résistances.Dans ce contexte, le projet de la thèse vise à mieux comprendre les bases moléculaires de l’efflux actif de drogues chez Pseudomonas aeruginosa, qui est un des plus importants mécanismes utilisés par la bactérie pour lutter contre l’action de plusieurs antibiotiques. Les systèmes d’efflux forment des complexes protéiques situés dans la paroi de la bactérie et expulsent de manière active les antibiotiques avant même qu’ils aient pu atteindre leur cible intracellulaire, les rendant ainsi inactif.L’étude structurale se focalise sur le système RND (Resistance-Nodulation and cell Division) MexA-MexB-OprM qui est constitutivement exprimé chez la bactérie sauvage et est surexprimé chez les souches résistantes. Ce complexe tripartite est composé d'un transporteur inséré dans la membrane interne, d'une protéine canal insérée dans la membrane externe et d’une protéine adaptatrice périplasmique qui relie les deux autres protéines pour former un conduit étanche traversant le périplasme. En l’absence de la connaissance de la structure du complexe tripartite, l’objectif de la thèse a été de développer une stratégie originale pour reconstituer in vitro le complexe entier dans un environnement lipidique à partir des trois composants natifs produits séparément.L’assemblage du complexe tripartite est réalisé en mélangeant MexB et OprM en Nanodisque avec MexA mimant les deux bicouches lipidiques. La structure de ce complexe tripartite a été obtenu en combinant la cryo microscopie électronique et à l’approche dite ‘des particules isolées’. La structure tridimensionnelle du complexe calculée à une résolution inférieure à 4 Å a permis de construire un modèle atomique du complexe tripartite assemblé entre deux Nanodisques.Le complexe tripartite est composé d’un trimère d’OprM, d’un trimère de MexB et d’un hexamère de MexA entourant MexB et en interaction avec OprM. Ces données ont permis de résoudre la structure complète de MexA dans le complexe dont la partie N-terminale jusqu’alors inconnue car trop flexible et décrivent pour la première fois l’ancrage de MexA dans une membrane lipidique. Les changements conformationnels sont observés sur OprM et MexB lorsqu’ils sont engagés dans le complexe avec l’ouverture de l’extrémité périplasmique d’OprM et le basculement d’une boucle de MexB permettant d’établir un contact supplémentaire avec MexA.Pour replacer cette structure tripartite dans le cycle d’efflux de l’antibiotique, celle-ci décrit un état qui s’apparente probablement à un état au repos, sachant qu’aucun ligand spécifique n’a été ajouté au cours de l’assemblage. De plus, le complexe forme un canal ouvert à son extrémité extracellulaire, fournissant le conduit pour évacuer les drogues transportées par MexB qui utilise la force protomotrice comme source d’énergie.Ce travail ouvre la perspective à des études structurales d’autres états conformationnels du système d’efflux en condition « énergisé » pour compléter la compréhension du mécanisme du cycle d’efflux. Par ailleurs, la connaissance de cette première structure du complexe natif tripartite constitue le premier pas vers le développement de molécules capables de bloquer l’assemblage du complexe à des fins thérapeutiques. En effet, de telles molécules inhiberaient l’efflux actif et restauraient l’efficacité perdue des antibiotiques actuels. / The increasing appearance of multi-drug-resistant pathogenic bacteria to most available antibiotics is emerging as a global public health problem. Unfortunately, excessive use in both human and animal medicine has led to the emergence of multi-drug-resistant strains for most antibiotics available on the market. It is therefore urgent to better understand the underlying mechanisms by which bacteria resist to antibiotics to combat multi-resistance strains. In this context, this work aims at better understanding the molecular basis of active drug efflux in Pseudomonas aeruginosa, which is one of the most important mechanisms used by the bacterium to resist to several antibiotics. Efflux systems form protein complexes in the bacterial wall and actively expel antibiotics even before they reach their intracellular target, rendering them inactive. The structural study focuses on the MexA-MexB-OprM RND (Resistance-Nodulation and cell Division) system that is constitutively expressed in wild-type bacteria and is over-expressed in resistant strains. This tripartite complex is composed of a transporter inserted into the inner membrane, a channel protein inserted in the outer membrane and a periplasmic adapter protein that connects the other two proteins to form a sealed conduit through the periplasm. In the absence of knowledge of the structure of the tripartite complex, the aim of the thesis was to develop an original strategy to reconstitute the whole complex in vitro in a lipid environment from the three native components produced separately.The assembly of the tripartite complex is made by mixing MexA with MexB and OprM in Nanodisc mimicking the two lipid bilayers. The structure of this tripartite complex was obtained by combining cryo electron microscopy and the so-called 'isolated particles' approach. The three-dimensional structure of the complex, calculated at a resolution of less than 4 Å, was used to build an atomic model of the tripartite complex assembled between two Nanodiscs. The tripartite complex is composed of an OprM trimer, a MexB trimer and a MexA hexamer surrounding MexB and interacting with OprM. We solve the complete structure of MexA whose N-terminal part hitherto unknown because of a high flexibility and describe for the first time the anchoring of MexA in a lipid membrane. The conformational changes are observed on OprM and MexB when they are assembled in the complex with the opening of the periplasmic end of OprM and the spatial re-orientation of a MexB loop to establish additional contact with MexA.To integrate this tripartite structure into the antibiotic efflux cycle, it describes a state that is probably a resting state, knowing that no specific ligand was added during assembly. In addition, the complex forms an open channel at its extracellular end, providing the conduit to evacuate the drugs carried by MexB that uses the proton motive force as a source of energy. This work opens new perspective for structural studies of other conformational states of the efflux system in "energized" conditions to fulfill our understanding of the efflux cycle mechanism. Moreover, the knowledge of this first tripartite native complex structure constitutes the first step towards the development of molecules capable of blocking the assembly of the complex for therapeutic uses. Indeed, such molecules would inhibit active efflux and restore the lost efficiency of current antibiotics.

Page generated in 0.0402 seconds