• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 72
  • 25
  • 17
  • 14
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 139
  • 75
  • 70
  • 61
  • 59
  • 48
  • 45
  • 44
  • 39
  • 33
  • 30
  • 29
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Manufacturing and heat transfer analysis of nano-micro fiber composites

Aşcioğlu, Birgül, Adanur, Sabit, January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
32

Electrospun carbon nanofibers for electrochemical capacitor electrodes

Wang, Tong. January 2007 (has links)
Thesis (Ph. D.)--Textile and Fiber Engineering, Georgia Institute of Technology, 2007. / Committee Chair: Satish Kumar; Committee Member: Anselm Griffin; Committee Member: John D. Muzzy; Committee Member: Ravi Bellamkonda; Committee Member: Rina Tannenbaum.
33

Síntese por Electrospinning de fibras de Nb2O5 e caracterização microestrutural e de propriedades ópticas

Leindecker, Gisele Cristina January 2013 (has links)
O objetivo deste estudo foi produzir, por electrospinning, fibras de pentóxido de nióbio(Nb2O5), usando como precursor o nióbio metálico. A solução utilizada para o electrospinning foi preparada pela dissolução do precursor em ácido fluorídrico (HF), seguida da adição de ácido acético e da solução polimérica de polivinilpirrolidona (PVP). A solução final foi submetida ao processo de electrospinning com tensão elétrica variando de 14 a 16 kV, distância entre coletor e capilar de 13 cm e fluxo de 1,5 mL/h. As fibras obtidas foram submetidas a tratamento térmico às temperaturas de 600, 700 e 800°C por um período de 1 hora, com taxa de aquecimento de 0,8°C/min. As fibras foram caracterizadas através de análises térmicas, espectroscopia de infravermelho por transformada de Fourier (FTIR), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de reflectância difusa (ERD). Também foram realizadas medidas de tamanho de cristalito pela fórmula de Scherrer, diâmetro médio com auxílio do aplicativo Image Tool e área superficial pelo modelo proposto por Brunnauer, Emmet e Teller (BET). Os resultados indicaram que foram formadas fibras da fase hexagonal (TT- Nb2O5), e que o aumento da tensão aplicada provocou uma redução no diâmetro das fibras, sendo 90 nm, o menor diâmetro médio obtido para as fibras produzidas aplicando uma tensão de 16 kV e sinterização a 700 ºC. O tamanho de cristalito médio aumentou de 18,48 para 36,08 nm, com o aumento da temperatura de tratamento térmico, resultando em queda da área superficial de 43,6 para 31,3 m2/g. Os valores de band gap medidos variaram de 3,32 a 3,57 eV, indicando que as nanofibras são semicondutores de gap largo. / This study aimed to produce by electrospinning, niobium pentoxide (Nb2O5) fibers, using metallic niobium as precursor. The solution used for electrospinning was prepared by dissolving the precursor in hydrofluoric acid (HF), followed by addition of acetic acid and solution of PVP polymer. The final solution was subjected to the process of electrospinning with voltage ranging from 14 to 16 kV, the distance between collector and capillary was 13 cm and flow of 1.5 mL / h. Fibers obtained were subjected to heat treatment at temperatures of 600, 700 and 800 ° C for a period of 1 hour, at a heating rate of 0.8 °C / min. Finally, Nb2O5 fibers were characterized by thermal analysis, Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (ERD). The crystallite size was measured by the Scherrer equation, the average diameter was obtained by Image Tool and the surface area by the model proposed by Brunnauer, Emmet and Teller (BET). The results showed that fibers were formed and presented hexagonal phase (TT-Nb2O5), and that the increase of the voltage caused a decrease in fiber diameter, with the smallest average diameter of 90 nm, obtained for fibers produced by applying a voltage of 16 kV and sintering at 700 °C. The average crystallite size increased from 18.48 to 36.08 nm with increasing calcination temperature, resulting in decreased surface area of 43.568 to 31.344 m2 / g. The band gap values measured ranged from 3.32 to 3.57 eV, indicating that the nanofibers are wide band gap semiconductors.
34

Síntese por Electrospinning de fibras de Nb2O5 e caracterização microestrutural e de propriedades ópticas

Leindecker, Gisele Cristina January 2013 (has links)
O objetivo deste estudo foi produzir, por electrospinning, fibras de pentóxido de nióbio(Nb2O5), usando como precursor o nióbio metálico. A solução utilizada para o electrospinning foi preparada pela dissolução do precursor em ácido fluorídrico (HF), seguida da adição de ácido acético e da solução polimérica de polivinilpirrolidona (PVP). A solução final foi submetida ao processo de electrospinning com tensão elétrica variando de 14 a 16 kV, distância entre coletor e capilar de 13 cm e fluxo de 1,5 mL/h. As fibras obtidas foram submetidas a tratamento térmico às temperaturas de 600, 700 e 800°C por um período de 1 hora, com taxa de aquecimento de 0,8°C/min. As fibras foram caracterizadas através de análises térmicas, espectroscopia de infravermelho por transformada de Fourier (FTIR), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de reflectância difusa (ERD). Também foram realizadas medidas de tamanho de cristalito pela fórmula de Scherrer, diâmetro médio com auxílio do aplicativo Image Tool e área superficial pelo modelo proposto por Brunnauer, Emmet e Teller (BET). Os resultados indicaram que foram formadas fibras da fase hexagonal (TT- Nb2O5), e que o aumento da tensão aplicada provocou uma redução no diâmetro das fibras, sendo 90 nm, o menor diâmetro médio obtido para as fibras produzidas aplicando uma tensão de 16 kV e sinterização a 700 ºC. O tamanho de cristalito médio aumentou de 18,48 para 36,08 nm, com o aumento da temperatura de tratamento térmico, resultando em queda da área superficial de 43,6 para 31,3 m2/g. Os valores de band gap medidos variaram de 3,32 a 3,57 eV, indicando que as nanofibras são semicondutores de gap largo. / This study aimed to produce by electrospinning, niobium pentoxide (Nb2O5) fibers, using metallic niobium as precursor. The solution used for electrospinning was prepared by dissolving the precursor in hydrofluoric acid (HF), followed by addition of acetic acid and solution of PVP polymer. The final solution was subjected to the process of electrospinning with voltage ranging from 14 to 16 kV, the distance between collector and capillary was 13 cm and flow of 1.5 mL / h. Fibers obtained were subjected to heat treatment at temperatures of 600, 700 and 800 ° C for a period of 1 hour, at a heating rate of 0.8 °C / min. Finally, Nb2O5 fibers were characterized by thermal analysis, Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (ERD). The crystallite size was measured by the Scherrer equation, the average diameter was obtained by Image Tool and the surface area by the model proposed by Brunnauer, Emmet and Teller (BET). The results showed that fibers were formed and presented hexagonal phase (TT-Nb2O5), and that the increase of the voltage caused a decrease in fiber diameter, with the smallest average diameter of 90 nm, obtained for fibers produced by applying a voltage of 16 kV and sintering at 700 °C. The average crystallite size increased from 18.48 to 36.08 nm with increasing calcination temperature, resulting in decreased surface area of 43.568 to 31.344 m2 / g. The band gap values measured ranged from 3.32 to 3.57 eV, indicating that the nanofibers are wide band gap semiconductors.
35

Síntese por Electrospinning de fibras de Nb2O5 e caracterização microestrutural e de propriedades ópticas

Leindecker, Gisele Cristina January 2013 (has links)
O objetivo deste estudo foi produzir, por electrospinning, fibras de pentóxido de nióbio(Nb2O5), usando como precursor o nióbio metálico. A solução utilizada para o electrospinning foi preparada pela dissolução do precursor em ácido fluorídrico (HF), seguida da adição de ácido acético e da solução polimérica de polivinilpirrolidona (PVP). A solução final foi submetida ao processo de electrospinning com tensão elétrica variando de 14 a 16 kV, distância entre coletor e capilar de 13 cm e fluxo de 1,5 mL/h. As fibras obtidas foram submetidas a tratamento térmico às temperaturas de 600, 700 e 800°C por um período de 1 hora, com taxa de aquecimento de 0,8°C/min. As fibras foram caracterizadas através de análises térmicas, espectroscopia de infravermelho por transformada de Fourier (FTIR), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de reflectância difusa (ERD). Também foram realizadas medidas de tamanho de cristalito pela fórmula de Scherrer, diâmetro médio com auxílio do aplicativo Image Tool e área superficial pelo modelo proposto por Brunnauer, Emmet e Teller (BET). Os resultados indicaram que foram formadas fibras da fase hexagonal (TT- Nb2O5), e que o aumento da tensão aplicada provocou uma redução no diâmetro das fibras, sendo 90 nm, o menor diâmetro médio obtido para as fibras produzidas aplicando uma tensão de 16 kV e sinterização a 700 ºC. O tamanho de cristalito médio aumentou de 18,48 para 36,08 nm, com o aumento da temperatura de tratamento térmico, resultando em queda da área superficial de 43,6 para 31,3 m2/g. Os valores de band gap medidos variaram de 3,32 a 3,57 eV, indicando que as nanofibras são semicondutores de gap largo. / This study aimed to produce by electrospinning, niobium pentoxide (Nb2O5) fibers, using metallic niobium as precursor. The solution used for electrospinning was prepared by dissolving the precursor in hydrofluoric acid (HF), followed by addition of acetic acid and solution of PVP polymer. The final solution was subjected to the process of electrospinning with voltage ranging from 14 to 16 kV, the distance between collector and capillary was 13 cm and flow of 1.5 mL / h. Fibers obtained were subjected to heat treatment at temperatures of 600, 700 and 800 ° C for a period of 1 hour, at a heating rate of 0.8 °C / min. Finally, Nb2O5 fibers were characterized by thermal analysis, Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (ERD). The crystallite size was measured by the Scherrer equation, the average diameter was obtained by Image Tool and the surface area by the model proposed by Brunnauer, Emmet and Teller (BET). The results showed that fibers were formed and presented hexagonal phase (TT-Nb2O5), and that the increase of the voltage caused a decrease in fiber diameter, with the smallest average diameter of 90 nm, obtained for fibers produced by applying a voltage of 16 kV and sintering at 700 °C. The average crystallite size increased from 18.48 to 36.08 nm with increasing calcination temperature, resulting in decreased surface area of 43.568 to 31.344 m2 / g. The band gap values measured ranged from 3.32 to 3.57 eV, indicating that the nanofibers are wide band gap semiconductors.
36

Bimetallic nanoparticles on carbon nanotubes and nanofibers copolymerized with ß-cyclodextrin for water treatment

Dlamini, Langelihle Nsikayezwe 23 September 2014 (has links)
M.Tech. (Chemistry) / Please refer to full text to view abstract
37

Polymer based electrospun nanofibers as diagnostic probes for the detection of toxic metal ions in water

Ondigo, Dezzline Adhiambo January 2013 (has links)
The thesis presents the development of polymer based electrospun nanofibers as diagnostic probes for the selective detection of toxic metal ions in water. Through modification of the chemical characteristics of nanofibers by pre- and post-electrospinning treatments, three different diagnostic probes were successfully developed. These were the fluorescent pyridylazo-2-naphthol-poly(acrylic acid) nanofiber probe, the colorimetric probe based on glutathione-stabilized silver/copper alloy nanoparticles and the colorimetric probe based on 2-(2’-Pyridyl)-imidazole functionalized nanofibers. The probes were characterized by Fourier transform infrared spectroscopy (FTIR), Energy dispersive x-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The fluorescent nanofiber probe was developed towards the determination of Ni²⁺. Covalently functionalized pyridylazo-2-naphthol-poly(acrylic acid) polymeric nanofibers were employed. The solid state Ni²⁺ probe exhibited a good correlation between the fluorescence intensity and nickel concentration up to 1.0 mg/mL based on the Stern-Volmer mechanism. The detection limit of the nanofiber probe was found to be 0.07 ng/mL. The versatility of the fluorescent probe was demonstrated by affording a simple, rapid and selective detection of Ni²⁺ in the presence of other competing metal ions by direct analysis without employing any sample handling steps. For the second part of the study, a simple strategy based on the in-situ synthesis of the glutathione stabilized silver/copper alloy nanoparticles (Ag/Cu alloy NPs) in nylon 6 provided a fast procedure for fabricating a colorimetric probe for the detection of Ni²⁺ in water samples. The electrospun nanofiber composites responded to Ni²⁺ ions but did not suffer any interference from the other metal ions. The effect of Ni²⁺ concentration on the nanocomposite fibers was considered and the “eye-ball” limit of detection was found to be 5.8 μg/mL. Lastly, the third probe was developed by covalently linking an imidazole derivative; 2-(2′-Pyridyl)-imidazole (PIMH) to Poly(vinylbenzyl chloride) (PVBC) and nylon 6 nanofibers by post-electrospinning treatments using a wet chemical method and graft copolymerization technique, respectively. The post-electrospinning modifications of the nanofibers were achieved without altering their fibrous morphology. The color change to red-orange in the presence of Fe²⁺ for both the grafted nylon 6 (white) and the chemically modified PVBC (yellow) nanofibers was instantaneous. The developed diagnostic probes exhibited the desired selectivity towards the targeted metal ions.
38

Optimising the polymer solutions and process parameters in the electrospinning of Chitosan

Jacobs, Nokwindla Valencia January 2012 (has links)
Electrospinning is a technique, which can be used to produce nanofibrous materials by introducing electrostatic fields into the polymer solution. Due to their intrinsic properties, such as small fiber diameter, small pore size and large surface area, nanofibres are suitable for use in a variety of applications including wound dressing, filtration, composites and tissue engineering. The study demonstrates the successful and optimised production of Poly(ethylene oxide) (PEO) and chitosan nanofibres by electrospinning. The biocidal effects of chitosan, chitosan-silver nanofibres and silver nanoparticles were successfully investigated. To set up a functional electrospinning apparatus, the PEO solution parameters (concentration, molecular weight, solvent, and addition of polyelectrolyte) and applied potential voltage on the structural morphology and diameter of PEO nanofibres were studied. At lower PEO concentrations, the fibres had morphology with a large variation in fibre diameter, whereas at the higher concentrations, the nanofibres exhibited ordinary morphology with uniform but larger fibre diameters. Higher molecular weight showed larger average diameters when compared to that obtained with the same polymer but of a lower molecular weight. The addition of polyelectrolyte to the polymer solution had an influence on the structural morphology of the PEO. Flow simulation studies of an electrically charged polymer solution showed that an increase in the flow rate was associated with an increase in poly(allylamine hydrochloride) (PAH) concentration for the low molecular weight polymer, the shape and size of the Taylor cone increasing with an increase in PAH concentration for the low molecular weight polymer. During optimization of the PEO nanofibres, based on statistical modelling and using the Box and Behnken factorial design, the interaction effect between PAH concentration and the tip-to-collector distance played the most significant role in obtaining uniform diameter of nanofibres, followed by the interaction between the tip-to-collector distance and the applied voltage and lastly by the applied voltage. The production and optimization of chitosan nanofibres indicated that the interactions between electric field strength and the ratio of trifluoroacetic acid (TFA) and dichloromethane (DCM), TFA/DCM solvents as well as between electric field strength and chitosan concentration had the most significant effect, followed by the concentration of chitosan in terms of producing nanofibres with uniform diameters. Chitosan and chitosan-silver nanofibres could be successfully electrospun by controlling the solution properties, such as surface tension and electrical conductivity with the silver nanoparticles in the chitosan solutions affecting the electrospinnability. The silver nanoparticles in the chitosan solution modified the morphological characteristics of the electrospun nanofibres, while the conductivity and the surface tension were elevated. The fibre diameter of the chitosan and chitosan-silver nanoparticles decreased with an increase in the silver content. The electrospun chitosan nanofibres had a smooth surface and round shape as compared to the silver-chitosan nanofibres with a distorted morphology. The chitosan and chitosan-silver nanofibres as well as the silver nanoparticles exhibited antimicrobial or inhibition activity against S. aureus than against E. coli. S. aureus bacterial culture showed good cell adhesion and spreading inwards into the chitosan nanofibrous membrane. The chitosan-silver nanofibres exhibited a greater minimum inhibitory concentration (MIC), followed by silver nanoparticles and then chitosan nanofibres; suggesting a synergistic effect between the chitosan and silver nanoparticles.
39

Biophysical Influence of Nanofiber Networks to Direct Pericyte Aggregation into Spheroids

Sharma, Sharan 25 July 2023 (has links)
Multicellular spheroids have emerged as a promising tool for drug delivery, cancer therapy, and tissue engineering. Compared to 2D monolayers, spheroids provide a more realistic representation of the 3D cellular environment, enabling better understanding of the signaling cascades and growth factors involved in vivo. The formation of in vitro spheroids involves the aggregation of several cells that proliferate to grow into larger spheroids. Biophysical cues provide crucial information for the cells to assemble into 3D structures. We used suspended fiber networks to demonstrate a new way to form and spatially pattern spheroids comprised of human pericytes. We show that fiber architecture (aligned vs. crosshatched), diameter (200, 500, and 800 nm), and contractility influence spheroids in their spontaneous formation, growth, and maintenance, and report a dynamic trade of cells between adjacent spheroids through remodeled fiber networks. We found that aligned fiber networks promoted spheroid formation independent of fiber diameter, while large-diameter crosshatched networks abrogated spheroid formation, promoting growth of 2D monolayers. Thus, a mixture of diameters and architectures allowed for spatial patterning of spheroids and monolayers within a single system. We further quantified various dynamic interactions and describe the forces involved during spheroid formation, cell efflux from spheroids, and show the loss and recovery of spheroid forces with pharmacological perturbation of Rho-associated protein kinase (ROCK). Thus, we develop new insights on the dynamics of spheroids using suspended fiber networks of varying diameters and architectures, with the potential to connect matrix biology with developmental, disease, and regenerative biology. / Master of Science / In recent years, studies involving multicellular spherical aggregates or 'spheroids' have gained popularity since they capture the 3D cellular environments seen within the body more realistically when compared to 2D cell culture systems (such as monolayers) traditionally used for biological studies. These spheroids resemble organs and tissues in terms of their structure and function better and are increasingly being studied for an array of applications such as drug delivery, cancer therapy, as implants and in tissue regeneration and tissue engineering. The cellular microenvironment consists of fibrous proteins of varying diameter arranged in various geometric patterns, which can influence the growth and culture of spheroids. Here, we use our Spinneret-Based Tunable Engineered Parameters (STEP) technique to fabricate fibrous networks with precise control over fiber diameter and architecture and study how biophysical cues can influence the formation and culture of spheroids. Using aortic pericytes, we show that fiber architecture (aligned vs. crosshatched) and diameter (200, 500, and 800 nm) can control how pericytes aggregate into either 2D monolayers or 3D spheroids. We study the effect of each of these parameters to show that stiffer, denser fibers are robust networks which the cells refrain from remodeling, and thus lead to monolayers while more compliant and sparser networks are easily remodeled to promote spheroid formation. Thus, we spatially pattern a mixture of 3D spheroids and 2D monolayers in a single system by varying the parameters at different regions. We quantify various interactions such as spheroid formation, spheroid merging, spheroid migration, cell efflux from spheroids and the dynamic contractile forces exerted on the matrix by spheroids during these interactions. We also show that contractility has a major role in spheroid formation and to maintain their structure and look at the changes in the gene expressions associated with contractility during the formation and growth of spheroids. Thus, we develop new knowledge in controlling the growth of pericytes into 2D and 3D structures and show that our fiber networks can be an essential platform for studying spheroids.
40

Development, Characterization and Testing of Titanium Dioxide Nanofibers Enhanced Ceramic Fibrous Filter Medium for Filtration Applications

Katta, Prathyusha 05 October 2006 (has links)
No description available.

Page generated in 0.0502 seconds