Spelling suggestions: "subject:"nanofibers."" "subject:"nanaofibers.""
231 |
Electrically Conductive Polymer CompositesRhodes, Susan M. January 2007 (has links)
No description available.
|
232 |
On the Analysis of Mechanical Properties of Nanofiber MaterialsKhasawneh, Qais Azzam 17 December 2008 (has links)
No description available.
|
233 |
Improving Performance and Drainage of Coalescing FiltersPatel, Shagufta Usman 05 August 2010 (has links)
No description available.
|
234 |
Spectroscopic Characterization of Organic and Inorganic Macromolecular MaterialsReinsel, Anna Michele 10 August 2011 (has links)
No description available.
|
235 |
Photochemical and Photoelectric Applications of II-VI Semiconductor NanomaterialsSugunan, Abhilash January 2010 (has links)
In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated two different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdTe nanotetrapods synthesized by solution-based thermal decomposition of organo-metallic precursors. In both the cases our main focus has been optimizing material synthesis for improving potential applications based on photon-electron interactions. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. The synthesis is based on epitaxial growth of ZnO seed-layer on a substrate in a chemical bath consisting of an aqueous solution of zinc nitrate and hexamethylenetetramine (HMT). We have suggested an additional role played by HMT during the synthesis of ZnO nanowire arrays. We have also extended this synthesis method to fabricate hierarchical nanostructures of nanofibers of poly-L-lactide acting as a substrate for the radially oriented growth of ZnO nanowires. The combination of high surface area of the nanofibrous substrate with the flexibility of the PLLA-ZnO hierarchical nanostructure enabled the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system that could effectively decompose single and combination of known organic pollutants in water, as well as render common waterborne bacteria nonviable. We have studied another chemical synthesis that is commonly used for size controlled synthesis of colloidal quantum dots, which was modified to obtain anisotropic nanocrystals mainly for CdE (E=S, Se, Te) compositions. In this work we demonstrate by use of oleic acid (instead of alkylphosphonic acids) it is possible to synthesize CdTe and CdSe nanotetrapods at much lower temperatures (~180 ºC) than what is commonly reported in the literature, with significantly different formation mechanism in the low-temperature reaction. Finally, we have performed preliminary photoconduction measurements with CdTe nanotetrapods using gold ‘nanogap’ electrodes fabricated in-house, and obtain up to 100 times enhancement in current levels in the I–V measurements under illumination with a white light source. / QC20100607
|
236 |
1, 2, and 3 Dimension Carbon/Silicon Carbon Nitride Ceramic CompositesCalderon, Flores Jean 01 January 2014 (has links)
Polymer-derived ceramics (PDCs) are exceptional ultra-high temperature and stable multifunctional class of materials that can be synthesized from a polymer precursor through thermal decomposition. The presented research focuses on 1-D nanofibers, 2-D films and 3-D bulk, carbon-rich silicon carbon nitride (SiCN) ceramics. 1-D nanofibers were prepared via electrospinning for light weight, flame retardant and conductive applications. The commercially available CerasetTM VL20, a liquid cyclosilazane pre-ceramic precursor, was mixed with polyacrylonitrile (PAN) in order to make the cyclosilazane electrospinnable. Carbon-rich PDC nanofibers were fabricated by electrospinning various ratios of PAN/cyclosilazane solutions followed by pyrolysis. Surface morphology of the electro spun nanofibers characterized by SEM show PDC nano?bers with diameters ranging from 100-300 nm. Also, thermal stability towards oxidation showed a 10% mass loss at 623°C. 2-D carbon/SiCN films were produced by drop-casting a mixture of PAN/cyclosilazane onto a glass slide followed by pyrolysis of the film. Samples ranging from 10:1 to 1:10 PAN:cyclosilazane were made by dissolving the solutes into DMF to produce solutions ranging from 1% to 12% by weight. Green, heat-stabilized, and pyrolyzed 8% films were examined with FTIR to monitor the change in chemical structure at each step of the ceramization. SEM shows that high PAN samples produced films with ceramic embedded spheroid components in a carbon matrix, while high cyclosilazane samples produced carbon embedded spheroid. Finally, this research focuses on the challenge of making fully dense, 3-D bulk PDCs materials. Here we present a composite of SiCN with reduced graphene oxide (rGO) aerogels as a route for fully dense bulk PDCs. Incorporation of the rGO aerogel matrix into the SiCN has its pros and cons. While it lowers the strength of the composite, it allows for fabrication of large bulk samples and an increase in the electrical conductivity of the PDC. The morphology, mechanical, electrical properties and thermal conductivity of graphene-SiCN composite with varying rGO aerogel loading (0.3-2.4%) is presented. The high temperature stability, high electrical conductivity and low thermal conductivity of these composites make them excellent candidates for thermoelectric applications. Generally, carbon-rich SiCN composites with improved thermal and electrical properties are of great importance to the aerospace and electronics industries due to their expected harsh operating environments.
|
237 |
Functional Nanocomposite Coatings for Use in Food PackagingWebb, Camden N 01 August 2023 (has links) (PDF)
Plastics are a class of materials known for their cost and property advantages, increasing significantly in their usage worldwide. Unfortunately, these benefits come with an increasingly concerning environmental impact. A combination of inadequate disposal options and combinations of materials have led to environmental disasters that will impact generations. One of the worst areas for plastic waste is food packaging. Plastic as a material generally excels at durability and longevity, but as food packaging, it outlives its intended purpose by several orders of magnitude. This leads to plastic food packaging materials sitting in landfill or leading to the environment for hundreds of years. Because of this, there is a strong motivation to develop food packaging materials that are biodegradable, yet still maintain the properties that make plastic better than other classes of materials. Food packaging has many forms, but in general, the most important aspects are cost, mechanical, and oxygen and water barrier properties. To achieve an end-product that excels in these aspects, combinations of materials called composites may be developed. Nanocomposites are a subcategory of composites composed of a matrix material and nanomaterials, separate phases that interact with one another in a number of ways. This research is focused on increasing the mechanical and barrier properties of polyvinyl alcohol, the most commercially-viable biodegradable polymer. The nanomaterials used were graphene oxide (GO) and cellulose nanofibers (CNF) for mechanical and barrier reinforcement. Five sample compositions were produced: a control PVA, CNF, 1 wt% GO, 5 wt% GO, and 10 wt% GO, which were drawn down on uncoated paper and cast by themselves. Testing of these nanocomposites included oxygen transmission, mechanical, and thermal property analysis, and various solvent-interaction testing including absorption of water and oil, Cobb testing, and water vapor permeation. With the addition of CNF and GO to PVA, there was an observed increase in barrier properties through a reduction of hydrophilicity and water absorption, and oxygen permeability.
|
238 |
Development of Conductive Green Polymer Nano-Composite for use in Construction of Transportation InfrastructureGissentaner, Tremaine D. January 2014 (has links)
No description available.
|
239 |
APPLICATIONS OF THIN CARBON COATINGS AND FILMS IN INJECTION MOLDINGCabrera, Eusebio Duarte January 2014 (has links)
No description available.
|
240 |
Tissue engineering strategies for cardiac regenerationHurley, Jennifer R. January 2011 (has links)
No description available.
|
Page generated in 0.0382 seconds