Spelling suggestions: "subject:"nanofibers."" "subject:"nanaofibers.""
201 |
Development of molecularly imprinted polymer based solid phase extraction sorbents for the selective cleanup of food and pharmaceutical residue samplesBatlokwa, Bareki Shima January 2012 (has links)
This thesis presents the development of chlorophyll, cholic acid, aflatoxin B1 molecularly imprinted polymer (MIP) particles and cholic acid MIP nanofibers for application as selective solid phase extraction (SPE) sorbents. The particles were prepared by bulk polymerization and the nanofibers by a novel approach combining molecular imprinting and electrospinning technology. The AFB1 MIP particles were compared with an aflatoxin specific immunoextraction sorbent in cleaning-up and pre-concentrating aflatoxins from nut extracts. They both recorded high extraction efficiencies (EEs) of > 97 % in selectively extracting the aflatoxins (AFB1, AFB2, AFG1 and AFG2). High reproducibility marked by the low %RSDs of < 1% and low LODs of ≤ 0.02 ng/g were calculated in all cases. The LODs were within the monitoring requirements of the European Commission. The results were validated with a peanut butter certified reference material. The chlorophyll MIP on the other hand selectively removed chlorophyll that would otherwise interfere during pesticide residue analysis (PRA) from > 0.6 to <0.09 Au in green plants extracts. The extracted chlorophyll was removed to far below the level of ≥ 0.399 Au that is usually associated with interference during PRA. Furthermore, the MIP demonstrated better selectivity by removing only chlorophyll (> 99%) in the presence of planar pesticides than the currently employed graphitized carbon black (GCB) that removed both the chlorophyll (> 88%) and planar pesticides (> 89%). For the interfering cholic acid during drug residue analysis, cholic acid MIP electrospun nanofibers demonstrated to be more sensitive and possessing higher loading capacity than the MIP particles. 100% cholic acid was removed by the nanofibers from standard solutions relative to 80% by the particles. This showed that the nanofibers have better performance than the micro particles and as such have potential to replace the particle based SPE sorbents that are currently in use. All the templates were optimally removed from the prepared MIPs by employing a novel pressurized hot water extraction template removal method that was used for the first time in this thesis. The method employed only water, an environmentally friendly solvent to remove templates to ≥ 99.6% with template residual bleeding of ≤ 0.02%.
|
202 |
Electrospun nanofibers as solid phase extraction sorbents and support for alkylphenols colorimetric probesTancu, Yolanda January 2014 (has links)
The thesis reports on fabricating alternative solid phase extraction (SPE) sorbents and colorimetric probes based on electrospun nanofibers for alkylphenols (APs). Hydroxyl methylated styrene [poly(co-styrene-CH₃OH)] and 3-oxobutanoate styrene [poly(co-styrene-OCOCH₃COCH₃)] copolymers were synthesized and fabricated into sorbent materials by electro-spinning/spraying. The fabricated morphologies consisting of bead free fibers, beaded fibers and particles were evaluated as SPE sorbents using batch experiments. Electropun fibers proved to be better sorbents as they exhibited extraction efficiency that exceeded 95% compared to 60% for beaded fibers and 40% for particles. In view to reduce sample and solvent volumes, smooth fibers were packed into pipette tips as SPE devices that yielded quantitative recoveries of APs from spiked wastewater samples. Recoveries ranged from 70% to 125% with LOD of 0.008, 0.01 and 0.1 μg mL⁻¹ for 4-tert octylphenol (4-t-OP), 4-octylphenol (4-OP) and 4-nonylphenol (4-NP) respectively, when using high performance liquid chromatography-fluorescence detector (HPLC-FLD). Furthermore, amino functionalised polydiacetylene polymers (PDAs), citrate capped gold (AuNPs) and silver nanoparticles (AgNPs) were evaluated as colorimetric probes for visual detection of APs. In colloidal studies, AuNPs probe showed a colour change from wine red to green upon introduction of analyte. UV-vis spectroscopy revealed the shifting of the surface plasmon resonance (SPR) peak from 525 nm to 729 nm induced by aggregation of AuNPs. For AgNPs probe, a colour change was observed from yellowish green to brown. Transmission electron microscopy (TEM) studies showed growth of AgNPs. A presumed oxidation of the analyte, forming an absorbing compound at 279 nm in both AgNPs and PDAs probes was also observed. For PDAs probe the colour change was from purple to pink. Concentrations as low as 30 μg mL⁻¹ were detectable in all colloidal based probes. Further colorimetric investigations were conducted with electrospun AuNPs-nylon 6 fiber mat. A colour change from purplish red to navy blue at concentrations of 1000 μg mL⁻¹ was observed. Electrospun AgNPs –nylon 6 fiber mat did not show a distinct colour change. High resolution scanning electron microscopy (HRSEM) revealed the analyte inducing the assembly of AuNPs and AgNPs as they covered the surface of the nanofiber mat. Electrospun nanofibers are a platform for analysis and thus tuning their chemistry will lead to sensitive and selective methods
|
203 |
Development of PVDF micro and nanostructures for cell culture studies / Développement de PVDF micro et nanostructures pour des études de culture cellulaireLhoste, Kévin 30 November 2012 (has links)
L'ingénierie tissulaire vise à réparer les tissus endommagés et à récupérer les fonctions biologiques correspondantes. Afin de restaurer un tissu endommagé tel que le système nerveux, la conception et la fabrication de nouveaux types d’échafaudages tissulaires sont nécessaires. Dans ce travail, nous avons développé plusieurs techniques de microfabrication pour le polyfluorure de vinylidène (PVDF), un fluoropolymère thermoplastique, non réactif et piézoélectrique, qui peut être utilisé pour la culture cellulaire et l'ingénierie tissulaire. Nous avons tout d'abord étudié l'adhésion et la croissance cellulaire sur des substrats en PVDF avec des motifs micro et nanométriques en utilisant différentes techniques de fabrication telles que la micro-photolithographie, la lithographie douce, l’impression par microcontact, etc. L'influence de la micro-structuration sur les activités piézo-électriques du PVDF a été caractérisée par différentes méthodes d'analyses de surface (FTIR, XRD). Par la suite, nous avons effectué une étude systématique sur la fabrication de nanofibres de PVDF et leur compatibilité avec la culture cellulaire. Enfin, nous avons démontré la possibilité de doper ces nanofibres avec des nanoparticules magnétiques ce qui les rends excitables à distance par un champ magnétique / Tissue engineering aims at repairing damaged tissues and recovering the lost or degraded biological functions with artificial scaffolds. In order to meet the requirement for more complex functionality such as peripheral nerve reconstruction, new types of scaffold materials are needed. In this work, we developed several micro- and nanofabrication techniques to pattern polyvinylidene fluoride (PVDF), a highly non-reactive, piezoelectric, thermoplastic fluoropolymer, which can serve as new constituents for advanced tissue engineering. We first studied the feasibility of PVDF patterning using conventional photolithography, soft lithography and microcontact printing. The fabricated patterns were systematically characterized by surface analysis techniques (FTIR, XRD) and used for cell culture studies. Then, we developed a study on electrospinning of PVDF nanofibers. Our results showed that the fabricated PVDF nanofibers were compatible with cell-based assays. Finally, we doped electrospun PVDF nanofibers with magnetic nanoparticles, which should make them excitable with a remote magnetic field
|
204 |
Desenvolvimento de biomateriais à base de quitosana : matriz de fibras eletrofiadas para regeneração tecidual e de hidrogel coacervado para entrega controlada de fármaco /Sato, Tabata Do Prado. January 2019 (has links)
Orientador: Alexandre Luiz Souto Borges / Coorientador: Artur José Monteiro Valente / Banca: Bruno Vinícius Manzolli Rodrigues / Banca: Fernanda Alves Feitosa / Banca: Lafayette Nogueira Júnior / Banca: Eduardo Shigueyuki Uemura / Resumo: Os atuais avanços no desenvolvimento de biomateriais caminham para 2 áreas promissoras: a de regeneração tecidual e a de entrega controlada de fármacos. Assim, o presente estudo objetivou a síntese e caracterização de diferentes matrizes (fibras e hidrogel) à base de quitosana, a fim de se obter materiais biomiméticos para atuação em ambas áreas. Para regeneração, delineou-se a síntese de um arcabouço de fibras de quitosana com e sem cristais de nanohidroxiapatita onde, para isso, foram eletrofiadas soluções de quitosana (Ch) e de quitosana com nanohidroxiapatita (ChHa). Os espécimes de Ch apresentaram maior homogeneidade e maior diâmetro médio de fibras (690 ± 102 nm) que ChHa (358 ± 49 nm). No teste de viabilidade celular e na atividade da fosfatase alcalina não houve diferença estatística entre os grupos experimentais (Ch e ChHa), porém ambos diferiram do grupo controle (p < 0,001). Para o âmbito de liberação de fármacos, sintetizou-se, pela técnica de emulsão, dois tipos de hidrogéis: o primeiro, uma mistura da fase aquosa da solução de Ch (1 mL) e da solução de DNA (1 mL) (1:1) e o segundo, mistura da fase aquosa da solução de Ch (1 mL) e solução de Pectina (1 mL) (1:1). Ambas misturas foram realizadas em álcool benzílico (5 mL) com instrumento de dispersão de alto desempenho (31-34000 rpm min-1 por 5 min). Após a obtenção dos géis, 20mg de cada grupo foram imersos em uma solução aquosa de Própolis Verde (PV), na concentração de 70 μg/mL por 2 h e a cinética de liberação... (Resumo completo, clicar acesso eletrônico abaixo) / Current advances in biomaterial development are moving to 2 promising areas: tissue regeneration and controlled drug delivery. Thus, the present study aimed the synthesis and characterization of different matrices (fibers and hydrogel) based on chitosan, in order to obtain biomimetic materials for performance in both areas. For regeneration, the synthesis of a scaffold of chitosan fibers with and without nanohydroxyapatite crystals was delineated, where chitosan (Ch) and chitosan with hydroxyapatite (ChHa) solutions were electrospun. Ch specimens presented higher homogeneity and larger mean fiber diameter (690±102nm) than ChHa (358 ± 49nm). In the cell viability test and alkaline phosphatase activity there was no statistical difference between the experimental groups. (Ch and ChHa), but both differed from the control group (p < 0,001). For the drug release scope, two types of hydrogels were synthesized by the emulsion technique: the first, a mixture of the aqueous phase of Ch solution (1 mL) and DNA solution (1 mL) (1:1) and the second, mixture of the aqueous phase of the Ch solution (1mL) and Pectin solution (1 mL) (1:1). Both mixtures were performed in benzyl alcohol (5 mL) with high performance dispersion instrument (31-34000 rpm min-1 for 5 min). After obtaining the gels, 20mg from each group were immersed in an aqueous solution of Propolis Green (PV), at a concentration of 70 µg/mL for 2 h and the release kinetics of PV were analyzed at 25 and 37oC in water and artificial saliva. The obtained specimens were lyophilized and then physically-chemically characterized. The presence of pectin and DNA was confirmed by FTIR. PV sorption induced a significant modification of the gel surface. A phase separation was found between chitosan and DNA. Encapsulation efficiency did not change significantly between 25 and 37oC. The release kinetics in water or saliva presented a two-step mechanism. And the biological results... / Doutor
|
205 |
Optically Transparent Nanocellulose-Reinforced Composites via Pickering Emulsification / ピッカリングエマルジョンによるナノセルロース補強透明材料Subir, Kumar Biswas 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22081号 / 農博第2373号 / 新制||農||1073(附属図書館) / 学位論文||R1||N5235(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 矢野 浩之, 教授 和田 昌久, 教授 辻井 敬亘 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
206 |
The Influence of Synthetic Microenvironments in Determining Stem Cell FatePhilip, Diana Liz 12 August 2021 (has links)
No description available.
|
207 |
Oxygen Sensing Electrospun Nanofibers for Biological ApplicationsPresley, Kayla Fay 11 October 2018 (has links)
No description available.
|
208 |
PŘÍPRAVA A CHARAKTERIZACE NANOČÁSTIC A NANOVLÁKEN NA BÁZI BIOPOLYMERŮ A JEJICH VYUŽITÍ V POTRAVINÁŘSTVÍ A KOSMETICE / PREPARATION AND CHARACTERIZATION OF BIOPOLYMER-BASED NANOPARTICLES AND NANOFIBERS AND THEIR APPLICATION IN FOOD AND COSMETICSKundrát, Vojtěch January 2021 (has links)
The presented dissertation thesis deals with the polymer polyhydroxybutyrate and other biopolymers as a basic building block for the construction of micro- and nanoscopic structures and materials used in food and cosmetics. In the theoretical part, current literary review is prepared to introduce the basics of this application field. The practical part of the work is composed of three blocks developed during the doctoral study. In the first and most important part are summarized comments to the academic and patent outputs, where among the academic ones it is possible to find two peer-reviewed articles dealing with the electrostatic and wet spinning of PHB and properties of prepared materials. The patent outputs consist of several accepted and applied projects, which summarize results on both PHB spinning methods, but also on general approaches enabling the processing of PHB into forms enabling many applications in food and cosmetics. Second part was focused on the patented composition of the UV protection cream based on the prepared nanoscopic and micro- morphologies of PHB. The third block summarizes results focused predominantly on the electrostatic spinning of PHB and other biopolymers. Finally, a short chapter containing a brief description of projects that were in a way related to the dissertation topic, but rather practical development work in Central Tanzania and West Africa, which draw on knowledge and contacts gained during studies at FCH BUT Brno.
|
209 |
Charakterizace vlastností materiálu PVDF v nanoměřítku / Characterization of PVDF material in nanoscale resolutionPisarenko, Tatiana January 2021 (has links)
Tato práce se zabývá charakterizací nanovláken na bázi polyvinylidenfluoridu. Zaměření práce je na piezoelektrické vlastnosti vlákna, které jsou studovány metodou piezoelektrické silové mikroskopie. Takto byly měřeny dva typy odlišných vzorků, které se lišily v parametrech výroby. Odlišnosti vláken v jejich fázovém složení byly také zkoumány za využití Ramanovy spektroskopie a infračervené spektroskopie s Fourierovou transformací. Chemická analýza povrchu a jeho stavu proběhla pomocí rentgenové fotoelektronové spektroskopie. Různé uspořádání nanovláken spolu s jejich průřezem bylo pozorováno rastrovacím elektronovým mikroskopem za využití fokusovaného iontového svazku. Rovněž byla zkoumána smáčivost a kontaktní úhel povrchu vzorků s demineralizovanou vodou. Bylo zjištěno, že vyšší rychlost otáček válce během procesu elektrostatického zvlákňování má velmi významný vliv na jejich uspořádání a tím i na parametry ovlivňující tvorbu piezoelektrického jevu a dalších materiálových vlastností.
|
210 |
Anorganická nanovlákna v žárobetonech / Castables with Inorganic NanofibersZogata, Stanislav January 2017 (has links)
This work deals with the use of inorganic nanofibers in refractory castables. The thesis describes some of the results of previously conducted research on nanofibers. Also description of nanofibres, production and distribution. The experimental part is focused on studying the interaction of Al2O3 and SiO2 nanofibres with aluminate cement. The main subject of investigation is a dispersion of nanofibers using a surfactant and ultrasonication.
|
Page generated in 0.0321 seconds