• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 48
  • 20
  • 13
  • 13
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Micro-/nanofluidics and single DNA dynamics in non-uniform electrokinetic flows

Wang, Shengnian 08 August 2006 (has links)
No description available.
12

Ecoulements de fluides complexes dans des canaux sub-microniques / Sub-micron flow of complex fluids

Cuenca, Amandine 09 November 2012 (has links)
Les écoulements de fluides complexes à l’échelle sub-micronique est une problématique rencontrée dans des domaines aussi divers que la récupération assistée du pétrole ou la lubrification des surfaces. Un fluide complexe a des propriétés rhéologiques riches, dues à la présence d’objets déformables en solution, comme les pelotes de polymère. Les phénomènes de surface, comme le glissement jouent un rôle important aux petites échelles. La question de l’effet du confinement sur la rhéologie de solutions de polymères est abordée. Nous caractérisons la taille des objets en solution et la rhéologie volumique des fluides. Grâce au développement d’une technique de photobleaching de fluorescence pour la mesure de vitesse d’écoulement dans des canaux sub-microniques, nous déterminons la viscosité effective des fluides en géométrie confinée. Cette approche expérimentale nous permet de montrer que le confinement induit une diminution de la viscosité effective des fluides. Une mesure directe des vitesses et longueurs de glissement est réalisée en microcanaux par vélocimétrie de particules (micro-PIV). Ces données mettent en évidence une réduction du glissement en géométrie confinée, qui est interprétée en termes de modification du mécanisme de glissement. Une distinction entre le comportement volumique et les phénomènes de surface ne permet plus de rendre compte du comportement du fluide à l’échelle sub-micronique. Une étude préliminaire des écoulements de solutions de tensioactifs à l’échelle sub-micronique est également proposée. / Rheology of high molecular weight polymer solutions at submicroscale is investigated, with a particular emphasis on the wall slip characterization. Our approach is to measure the velocity of a pressure-driven flow in sub-microchannels in order to determine an effective viscosity of fluids. We have been using fluorescence photobleaching as a non-invasive technique to evaluate the velocity of a pressure-driven flow in 175 to 4000 nm high channels. A striking reduction of the effective viscosity is observed with the confinement, as compared to the bulk one. Direct measurement of slip velocity in microchannels is performed, using z-resolved micro-Particle Image Velocimetry (PIV). This study enables to draw two important conclusions, which have never been experimentally demonstrated. Slippage of polymer solutions in the semi-dilute unentangled regime is greatly reduced by confinement. A distinction of bulk and surface phenomena seems no longer valid at the submicroscale. This experimental method is also adapted to the study of surfactant solutions flows at the submicroscale.
13

Coupled electrokinetic fluxes in a single nanochannel for energy conversion / Flux électrocinétiques couplés dans un nanocanal unique pour la conversion d'énergie

Sharma, Preeti 14 April 2017 (has links)
Les phénomènes électrocinétiques couplés au sein d'un nanocanal sont d'intérêt pour la conversion d'énergie et la production d'électricité reposant sur le mélange contrôlé d'eau douce et d'eau salée aussi appelée "énergie bleue". L'origine des phénomènes est lié à l'interaction avec des parois chargées et au transport d'ions au sein de ce qu'on nomme les couches de Debye. Ce travail vise à une meilleure compréhension de la physique et des phénomènes de transport dans ces couches dans le cadre de solutions confinées dans des nanocanaux.Une instrumentation spécifique a été développée pendant la thèse pour étudier les mécanismes qui gouvernent ces flux couplés. L'idée est de caractériser simultanément le transport de masse et le courant électrique au sein d'un nanocanal soumis à une différence de salinité de pression ou de tension électrique. Ce travail est divisé en trois parties.Dans la première partie, est décrite une cellule conçue pour la mesure et le contrôle de courant et tension électrique en présence de différence de pression ou de salinité au bornes d'un nanopores. L'utilisation de la cellule est illustrer dans le cas d'une membrane nanoporeuse de nafion.La seconde partie est focalisée sur une méthode simple de préparation d'un nanocanal directement connectable à un dispositif macroscopique. Le nanocanal, d'un micromètre de long, présente une géométrie conique, d'angle ajustable, et des extrémités équipées d'électrode déposées par pulvérisation cathodique.La troisième partie, concerne le développement d'une méthode pour la mesure directe de débit jusqu'à 10 pL/min s'écoulant au sein d'un nanocanal. Cette méthode combinée à une caractérisation électrique, pourra être utilisée, en présence de gradient de pression, de tension ou de salinité pour mesurer le débit et le courant électrique au sein d'un nanocanal de manière simultanée et indépendante. / Coupled electrokinetic phenomena within nanochannel are of interest for energy harvestingand production of electricity based on the controlled mixing of river water with sea water known as "blue energy". The origin of the phenomena is related to interaction with charged walls and transport of ions within the so called Debye layer. This work aims at a better understanding of the physics and transport phenomena in this layer associated with solution confined in nanochannel.A specific instrumentation has been developed during this thesis to study the mechanisms governing coupled nanofluics fluxes. The idea is to characterize simultaneously the mass transport within the nanochannel and the electrical current driven through the nanochannel by the application of either salinity difference , pressure difference or voltage difference across the channel. The thesis is divided into three parts.In the first part, a custom made flow cell and experimental conditions to control and measure various fluxes is presented. The capability of cell to measure current or voltage under applied pressure or salinity gradient is presented taking the benefit of commercial nanoporous Nafion membrane.The second part is focused on an easy way of preparation of nanochannel sample in the form of single chip, in which nanochannel is interfaced to micro and macroscopic world. A well-controlled, 1.4µm long nanochannel of conical geometry with a maximum aspect ratio of 10 is fabricated. The minimum apex size of nanochannel achieved here is 50 nm which is about 30 times less than the length of channel. The presence of electrode directly at the interface of nano to micro cavity allow to perform electrical characterization of nanochannel with high precision.The third part of the thesis is devoted to the development of a method for the direct measurement of flow rate as low as 10 pL/min across a single nanochannel. This measurement approach combined with electrical measurement, could be used, in presence of pressure, voltage or salinity gradient, to measure the flow rate and the electrical current across a single nanochannel simultaneously and independently.
14

Hydrodynamic interactions in narrow channels

Misiunas, Karolis January 2017 (has links)
Particle-particle interactions are of paramount importance in every multi-body system as they determine the collective behaviour and coupling strength. Many well-known interactions like electro-static, van der Waals or screened Coulomb, decay exponentially or with negative powers of the particle spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as 1/r in bulk, and are assumed to decay in small channels. Such interactions are ubiquitous in biological and technological systems. Here I confine multiple particles undergoing Brownian motion in narrow, microfluidic channels and study their coupling through hydrodynamic interactions. Our experiments show that the hydrodynamic particle-particle interactions are distance-independent in these channels. We also show that these interactions affect actively propelled particles via electrophoresis or gravity, resulting in non-linear transport phenomena. These findings are of fundamental importance for understanding transport of dense mixtures of particles or molecules through finite length, water-filled channels or pore networks.
15

Design, Fabrication, and Optimization of Miniaturized Devices for Bioanalytical Applications

Kumar, Suresh 01 August 2015 (has links)
My dissertation work integrates the techniques of microfabrication, micro/nanofluidics, and bioanalytical chemistry to develop miniaturized devices for healthcare applications. Semiconductor processing techniques including photolithography, physical and chemical vapor deposition, and wet etching are used to build these devices in silicon and polymeric materials. On-chip micro-/nanochannels, pumps, and valves are used to manipulate the flow of fluid in these devices. Analytical techniques such as size-based filtration, solid-phase extraction (SPE), sample enrichment, on-chip labeling, microchip electrophoresis (µCE), and laser induced fluorescence (LIF) are utilized to analyze biomolecules. Such miniaturized devices offer the advantages of rapid analysis, low cost, and lab-on-a-chip scale integration that can potentially be used for point-of-care applications.The first project involves construction of sieving devices on a silicon substrate, which can separate sub-100-nm biostructures based on their size. Devices consist of an array of 200 parallel nanochannels with a height step in each channel, an injection reservoir, and a waste reservoir. Height steps are used to sieve the protein mixture based on size as the protein solution flows through channels via capillary action. Proteins smaller than the height step reach the end of the channels while larger proteins stop at the height step, resulting in separation. A process is optimized to fabricate 10-100 nm tall channels with improved reliability and shorter fabrication time. Furthermore, a protocol is developed to reduce the electrostatic interaction between proteins and channel walls, which allows the study of size-selective trapping of five proteins in this system. The effects of protein size and concentration on protein trapping behavior are evaluated. A model is also developed to predict the trapping behavior of different size proteins in these devices. Additionally, the influence of buffer ionic strength, which can change the effective cross-sectional area of nanochannels and trapping of proteins at height steps, is explored in nanochannels. The ionic strength inversely correlates with electric double layer thickness. Overall, this work lays a foundation for developing nanofluidic-based sieving systems with potential applications in lipoprotein fractionation, protein aggregate studies in biopharmaceuticals, and protein preconcentration. The second project focuses on designing and developing a microfluidic-based platform for preterm birth (PTB) diagnosis. PTB is a pregnancy complication that involves delivery before 37 weeks of gestation, and causes many newborn deaths and illnesses worldwide. Several serum PTB biomarkers have recently been identified, including three peptides and six proteins. To provide rapid analysis of these PTB biomarkers, an integrated SPE and µCE device is assembled that provides sample enrichment, on-chip labeling, and separation. The integrated device is a multi-layer structure consisting of polydimethylsiloxane valves with a peristaltic pump, and a porous polymer monolith in a thermoplastic layer. The valves and pump are fabricated using soft lithography to enable pressure-based sample actuation, as an alternative to electrokinetic operation. Porous monolithic columns are synthesized in the SPE unit using UV photopolymerization of a mixture consisting of monomer, cross-linker, photoinitiator, and various porogens. The hydrophobic surface and porous structure of the monolith allow both protein retention and easy flow. I have optimized the conditions for ferritin retention, on-chip labelling, elution, and µCE in a pressure-actuated device. Overall functionality of the integrated device in terms of pressure-controlled flow, protein retention/elution, and on-chip labelling and separation is demonstrated using a PTB biomarker (ferritin). Moreover, I have developed a µCE protocol to separate four PTB biomarkers, including three peptides and one protein. In the future, an immunoaffinity extraction unit will be integrated with SPE and µCE to enable rapid, on-chip analysis of PTB biomarkers. This integrated system can be used to analyze other disease biomarkers as well.
16

Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics

Stöckle, Silke January 2010 (has links)
With the rise of nanotechnology in the last decade, nanofluidics has been established as a research field and gained increased interest in science and industry. Natural aqueous nanofluidic systems are very complex, there is often a predominance of liquid interfaces or the fluid contains charged or differently shaped colloids. The effects, promoted by these additives, are far from being completely understood and interesting questions arise with regards to the confinement of such complex fluidic systems. A systematic study of nanofluidic processes requires designing suitable experimental model nano – channels with required characteristics. The present work employed thin liquid films (TLFs) as experimental models. They have proven to be useful experimental tools because of their simple geometry, reproducible preparation, and controllable liquid interfaces. The thickness of the channels can be adjusted easily by the concentration of electrolyte in the film forming solution. This way, channel dimensions from 5 – 100 nm are possible, a high flexibility for an experimental system. TLFs have liquid IFs of different charge and properties and they offer the possibility to confine differently shaped ions and molecules to very small spaces, or to subject them to controlled forces. This makes the foam films a unique “device” available to obtain information about fluidic systems in nanometer dimensions. The main goal of this thesis was to study nanofluidic processes using TLFs as models, or tools, and to subtract information about natural systems plus deepen the understanding on physical chemical conditions. The presented work showed that foam films can be used as experimental models to understand the behavior of liquids in nano – sized confinement. In the first part of the thesis, we studied the process of thinning of thin liquid films stabilized with the non – ionic surfactant n – dodecyl – β – maltoside (β – C₁₂G₂) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration 64. The surfactant concentration in the film forming solutions was varied at constant electrolyte (NaCl) concentration. The velocity of thinning was analyzed combining previously developed theoretical approaches. Qualitative information about the mobility of the surfactant molecules at the film surfaces was obtained. We found that above a certain limiting surfactant concentration the film surfaces were completely immobile and they behaved as non – deformable, which decelerated the thinning process. This follows the predictions for Reynolds flow of liquid between two non – deformable disks. In the second part of the thesis, we designed a TLF nanofluidic system containing rod – like multivalent ions and compared this system to films containing monovalent ions. We presented first results which recognized for the first time the existence of an additional attractive force in the foam films based on the electrostatic interaction between rod – like ions and oppositely charged surfaces. We may speculate that this is an ion bridging component of the disjoining pressure. The results show that for films prepared in presence of spermidine the transformation of the thicker CF to the thinnest NBF is more probable as films prepared with NaCl at similar conditions of electrostatic interaction. This effect is not a result of specific adsorption of any of the ions at the fluid surfaces and it does not lead to any changes in the equilibrium properties of the CF and NBF. Our hypothesis was proven using the trivalent ion Y3+ which does not show ion bridging. The experimental results are compared to theoretical predictions and a quantitative agreement on the system’s energy gain for the change from CF to NBF could be obtained. In the third part of the work, the behavior of nanoparticles in confinement was investigated with respect to their impact on the fluid flow velocity. The particles altered the flow velocity by an unexpected high amount, so that the resulting changes in the dynamic viscosity could not be explained by a realistic change of the fluid viscosity. Only aggregation, flocculation and plug formation can explain the experimental results. The particle systems in the presented thesis had a great impact on the film interfaces due to the stabilizer molecules present in the bulk solution. Finally, the location of the particles with respect to their lateral and vertical arrangement in the film was studied with advanced reflectivity and scattering methods. Neutron Reflectometry studies were performed to investigate the location of nanoparticles in the TLF perpendicular to the IF. For the first time, we study TLFs using grazing incidence small angle X – ray scattering (GISAXS), which is a technique sensitive to the lateral arrangement of particles in confined volumes. This work provides preliminary data on a lateral ordering of particles in the film. / Mit dem Heranwachsen der Nanotechnologie in den vergangenen zehn Jahren hat sich die Nanofluidik als Forschungsbereich etabliert und erfährt wachsende Aufmerksamkeit in der Wissenschaft, sowie auch in der Industrie. Im biomedizinischen Bereich, wo intrazelluläre Prozesse häufig komplexer, nanofluidischer Natur sind, wird sich vermehrt für ein detailliertes Verständnis von nanofluidischen Prozessen interessiert, z.B. für den Einfluss von Kolloiden verschiedenster Form oder elektrischer Ladung auf die Kanäle und auf das Fließverhalten oder die Auswirkungen der Einengung von Flüssigkeiten und Kolloiden in Nanometer Geometrien. In der vorliegenden Arbeit werden dünne flüssige Filme, hinsichtlich ihrer Funktion als nanofluidische Modelle untersucht. Im ersten Teil der Arbeit wurde die Fließgeschwindigkeit des Fluids aus dem dünnen Film, abhängig von der Konzentration der filmstabilisierenden Tensidmoleküle n – Dodecyl β – D – Maltoside ( β – C₁₂G₂) bei einer konstanten Elektrolytkonzentration von 0.2 mM NaCl untersucht. Mit einem theoretischen Modell konnte das Dünnungsverhalten nachgezeichnet werden. Es wurde eine kritische Tensidkonzentration gefunden, unter der die Oberflächen lateral mobil sind und über der sie sich wie fest verhalten. Dadurch konnten wir Aufschluss darüber erlangen, wie die Oberfläche des Films unter verschiedenen Bedingungen geschaffen ist, und das in Bezug zur Verteilungsdichte der Moleküle an den Oberflächen setzen. Im weiteren wurden komplexere, nanofluidische Systeme untersucht, wobei zum einen ~ 1 nm lange, stäbchenförmige, multivalent geladene Spermidin - Moleküle die punktförmigen Elektrolyte ersetzten. Es konnte eine deutliche Veränderung der Stabilität zwischen Filmen mit und ohne Stäbchen festgestellt werden. Die Filme, mit NaCl, blieben länger in dem metastabilen „Common Film“ (CF) Zustand als die Filme, die eine vergleichbare Konzentration von Spermidin Stäbchen beinhalteten. Die Ergebnisse deuteten auf eine zusätzliche Anziehungskraft durch Brückenbildung zwischen zwei geladenen Oberflächen durch gegensätzlich geladene Stäbchenförmige Moleküle hin. Es konnte gezeigt werden, dass dieser Effekt weder ein Ergebnis von spezifischer Ionenadsorption an die Filmoberfläche war, noch ein Unterschied in den Gleichgewichtszuständen von den Dicken der CFs und der Newton Black Films (NBFs) hervorrief, was auf die korrekte Annahme der Ionenstärke in der Lösung schließen ließ. Auch in Versuchen mit ebenfalls trivalenten Ionen YCl3 wurde festgestellt, dass kein vergleichbarer Überbrückungseffekt auftritt. Die Ergebnisse wurden mit theoretischen Simulationen verglichen und es wurde eine quantitative Übereinstimmung gefunden bezüglich der Größe des Systeminternen Energiegewinns durch den Überbrückungseffekt. Desweiteren wurde das Fließverhalten von Fluiden mit Kolloiden eingeengt in Nanometer Geometrien untersucht. Für zwei verschiedene Arten von Nanopartikeln (Fe3O4 stabilisiert mit Oleinsäure und polymerstabilisierte Goldpartikel) wurde eine Verlangsamung der Fließgeschwindigkeit festgestellt. Mit einem theoretischen Modell konnte das Fließverhalten nur für enorm erhöhte Viskositätswerte des Fluids erklärt werden. Die Viskositätserhöhung wurde mit Partikelaggregaten, die den Ausfluss behindern, erklärt und diskutiert, unter der Annahme eines nicht - Newtonischen Fließverhaltens der Dispersionen. Gleichermaßen wurde die strukturelle Anordnung der Partikel in den Filmen hinsichtlich ihrer vertikalen und lateralen Verteilung untersucht. In dieser Arbeit werden vorläufige Ergebnisse präsentiert, die noch weiteren Studien bedürfen. Mit Neutronenreflexion sollte die Anordnung der Partikel orthogonal zur Oberfläche im Film analysiert werden. Eine qualitative Analyse lässt schließen, dass bei einer höheren Konzentration von Partikeln in Lösung, sich auch eine erhöhte Konzentration von Partikeln im dünnen Film befindet. Leider konnten die Daten nicht hinsichtlich der Lage der Partikel analysiert werden. Zum ersten Mal wurden dünne flüssige Filme mit Kleinwinkelröntgenstreuung unter streifendem Einfall (GISAXS) analysiert. Mit Hilfe dieser Methode sollte eine laterale Anordnung der Partikel im Film untersucht werden. Es konnten erfolgreiche Messungen durchgeführt werden und mit Hilfe der rechnergestützten Analyse konnte eine Aussage gemacht werden, dass ~ 6 nm große Teilchen in ~ 43 nm Abstand sich im Film befinden. Die Aussage bezüglich der kleinen Teilchen könnte sich auf einzelne, kleinere Partikel beziehen, allerdings könnten auch die 43 nm eine relevante Strukturgröße darstellen, da es in der Dispersion gehäuft Aggregate mit dem Durchmesser in dem Größenbereich vorliegen. Zusammenfassend können sich mit dieser Arbeit die dünnen flüssigen Filme als eine wichtige Kernmethode der Untersuchung von nanofluidischen Prozessen, wie sie häufig in der Natur vorkommen, behaupten.
17

Carbon Nanotube Based Nanofluidic Devices

January 2011 (has links)
abstract: Nanofluidic devices in which one single-walled carbon nanotube (SWCNT) spans a barrier between two fluid reservoirs were constructed, enabling direct electrical measurement of the transport of ions and molecules. Ion current through these devices is about 2 orders of magnitude larger than that predicted from the bulk resistivity of the electrolyte. Electroosmosis drives excess current, carried by cations, and is found to be the origin of giant ionic current through SWCNT as shown by building an ionic field-effect transistor with a gate electrode embedded in the fluid barrier. Wetting of inside of the semi-conducting SWCNT by water showed the change of its electronic property, turning the electronic SWCNT field-effect transistor to "on" state. These findings provide a new method to investigate and control the ion and molecule behavior at nanoscale. / Dissertation/Thesis / Ph.D. Physics 2011
18

Probing Molecular Stoichiometry by Photon Antibunching and Nanofluidics Assisted Imaging in Solution

Cheng, Hao 18 May 2017 (has links)
No description available.
19

MANUFACTURING PROCESS OF NANOFLUIDICS USING AFM PROBE

Karingula, Varun Kumar 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nano fluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.
20

Modeling and Stability of Flows in Compliant Microchannels

Xiaojia Wang (13113021) 19 July 2022 (has links)
<p>Fluids conveyed in deformable conduits are often encountered in  microfluidic applications, which makes fluid--structure interactions (FSIs) an unavoidable phenomenon. In particular, experiments reported the existence of FSI instabilities in compliant microchannels at low Reynolds numbers, Re, well below the established values for rigid conduits. This observation has significant implications for new strategies for mixing at the microscale, which might harness FSI instabilities in the absence of  turbulence. In this thesis, we conduct research on the modeling and stability of microscale FSIs. Understanding the steady response, the dynamics and the stability of these FSIs are the three major objectives. This thesis begins with the analysis of the steady-state scalings and the linear stability of a previously derived mathematical model, through which we emphasize the power of reduced modeling in making the FSI problems tractable. Next, we turn to a more realistic problem regarding FSIs in a common configuration of low-Re flows through long, shallow rectangular three-dimensional microchannels. Through a scaling analysis, which takes advantage of the geometric separation of scales, we find that the flow can be simplified under the lubrication approximation, while the wall deforms like a variable-stiffness Winkler foundation at the leading order. Coupling these dominant effects, we obtain a new fitting-parameter-free flow rate--pressure drop relation for a thick-walled microchannel, which rationalizes previous experiments. Then, we derive a one-dimensional (1D) steady model, at both vanishing and finite Re, by coupling the reduced flow and deformation models. To satisfy the displacement constraints along the channel edges, weak tension is introduced to regularize the underlying Winkler-foundation-like mechanism. This model is then made dynamic by introducing flow unsteadiness and the elastic wall's inertia. We conduct a global stability analysis of this system by perturbing the non-flat steady state with infinitesimal perturbations. We identify the existence of globally unstable modes, typically in the weakly inertial flow regime, whose features are consistent with experimental observations. The unstable eigenmodes oscillate at frequencies close to the natural frequency of the wall, suggesting that the instabilities are resonance phenomena. We also capture the transient energy amplification of perturbations through a linear non-normality analysis of the proposed reduced 1D FSI model.</p>

Page generated in 0.0549 seconds