• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da variação da resistência química em nanocompósitos de policarbonato com argila sódica natural e argila organofílica através da análise da energia livre de superfície

Malagrino, Thiago Ramos Stellin 26 January 2016 (has links)
Made available in DSpace on 2016-03-15T19:36:56Z (GMT). No. of bitstreams: 1 Thiago Ramos Stellin Malagrino.pdf: 4441654 bytes, checksum: 6ca4cb745da024c77c96b57a51ae6f04 (MD5) Previous issue date: 2016-01-26 / Polycarbonate, an amorphous engineering polymer, has excellent mechanical strength and although it s good chemical resistance, its interaction with some types of alkali and some organic solvents is weak. The main objective of this work was to study the effect of the inclusion of nanometric particle size of natural sodium clay (named Nanolite) and sodium clay treated with quaternary ammonium salt (named Cloisite 15A) in resin processing in order to investigate the variations in chemical properties, transparency and molecular structure. The characterization of nanocomposite was performed using methods of Scanning Electron Microscopy (SEM), Molar Mass Characterization by Mark-Houwink-Sakurada equation, Differential Scanning Calorimetry (DSC), Melt Flow Rate (MFR), Differential Thermal Analysis (DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Chemical Resistance obtained by the contact angle technique / Fowkes method. Optical, thermal, physical and chemical testing indicated that the molecular structure of PC after the inclusion of clays remained unchanged showing no irreversible degradation. The analysis of chemical resistance through the contact angle method showed significant improvement in the surface free energy of the nanocomposites when using the organoclay (Cloisite 15A) and partial improvement when used natural sodium clay (Nanolite). The decrease in surface free energy, indicates a likely improvement in the chemical resistance of the nanocomposites. / O Policarbonato, polímero de engenharia de estrutura amorfa, possui excelente resistência mecânica, e embora possua boa resistência química, deixa a desejar no que se refere ao contato com alguns tipos de álcalis e solventes orgânicos. O objetivo principal deste trabalho foi de estudar comparativamente o efeito da inclusão de partículas nanométricas de argila sódica natural (Nanolite) e argila sódica tratada com sal quaternário de amônio (Cloisite 15A), no processamento da resina a fim de investigar as variações ocorridas nas propriedades químicas e consequentemente, na transparência e estrutura molecular. A caracterização do nanocompósito foi realizada por meio de métodos de Microscopia Eletrônica de Varredura (MEV), massa molar calculada pela equação de Mark-Houwink-Sakurada, Calorimetria Diferencial por Varredura (DSC), Índice de Fluidez (IF), Análise Térmica Diferencial (DTA), Espectroscopia no Infravermelho por Transformada de Fourier (FTIR), Difração de Raios X (DRX) e Resistência Química calculada através da técnica de ângulo de contato / método de Fowkes. Os ensaios óticos, térmicos, físicos e químicos indicaram que a estrutura molecular do PC após a inclusão das argilas permaneceu inalterada, sem degradação irreversível. A análise da resistência química através do método de ângulo de contato apresentou significativa melhora na energia livre superficial dos nanocompósitos quando utilizada a argila organofílica (Cloisite 15A) e, melhora parcial quando utilizada a argila sódica natural (Nanolite). A queda da energia livre superficial, indica que existe uma provável melhora na resistência química dos nanocompósitos.
2

Förster Resonance Energy Transfer Mediated White-Light-Emitting Rhodamine Fluorophore Derivatives-Gamma Phase Gallium Oxide Nanostructures

Chiu, Wan Hang Melanie January 2012 (has links)
The global lighting source energy consumption accounts for about 22% of the total electricity generated. New high-efficiency solid-state light sources are needed to reduce the ever increasing demand for energy. Single-phased emitter-based composed of transparent conducting oxides (TCOs) nanocrystals and fluorescent dyes can potentially revolutionize the typical composition of phosphors, the processing technology founded on the binding of dye acceptors on the surface of nanocrystals, and the configurations of the light-emitting diodes (LEDs) and electroluminescence devices. The hybrid white-light-emitting nanomaterial is based on the expanded spectral range of the donor-acceptor pair (DAP) emission originated from the γ-gallium oxide nanocrystals via Förster resonance energy transfer (FRET) to the surface-anchored fluorescent dyes. The emission of the nanocrystals and the sensitized emission of the chromophore act in sync as an internal relaxation upon the excitation of the γ–gallium oxide nanocrystals. It extends the lifetime of the secondary fluorescent dye chromophore and the internal relaxation within this hybrid complex act as a sign for a quasi single chromophore. The model system of white-light-emitting nanostructure system developed based on this technology is the γ–gallium oxide nanocrystals-Rhodamine B lactone (RBL) hybrid complex. The sufficient energy transfer efficiency of 31.51% within this system allowed for the generation of white-light emission with the CIE coordinates of (0.3328, 0.3380) at 5483 K. The relative electronic energy differences of the individual components within the hybrid systems based on theoretical computation suggested that the luminance of the nanocomposite comprised of RBL is dominantly mediated by FRET. The production of white-light-emitting diode (WLED) based on this technology have been demonstrated by solution deposition of the hybrid nanomaterials to the commercially available ultraviolet (UV) LED due to the versatility and chemical compatibility of the developed phosphors.
3

Förster Resonance Energy Transfer Mediated White-Light-Emitting Rhodamine Fluorophore Derivatives-Gamma Phase Gallium Oxide Nanostructures

Chiu, Wan Hang Melanie January 2012 (has links)
The global lighting source energy consumption accounts for about 22% of the total electricity generated. New high-efficiency solid-state light sources are needed to reduce the ever increasing demand for energy. Single-phased emitter-based composed of transparent conducting oxides (TCOs) nanocrystals and fluorescent dyes can potentially revolutionize the typical composition of phosphors, the processing technology founded on the binding of dye acceptors on the surface of nanocrystals, and the configurations of the light-emitting diodes (LEDs) and electroluminescence devices. The hybrid white-light-emitting nanomaterial is based on the expanded spectral range of the donor-acceptor pair (DAP) emission originated from the γ-gallium oxide nanocrystals via Förster resonance energy transfer (FRET) to the surface-anchored fluorescent dyes. The emission of the nanocrystals and the sensitized emission of the chromophore act in sync as an internal relaxation upon the excitation of the γ–gallium oxide nanocrystals. It extends the lifetime of the secondary fluorescent dye chromophore and the internal relaxation within this hybrid complex act as a sign for a quasi single chromophore. The model system of white-light-emitting nanostructure system developed based on this technology is the γ–gallium oxide nanocrystals-Rhodamine B lactone (RBL) hybrid complex. The sufficient energy transfer efficiency of 31.51% within this system allowed for the generation of white-light emission with the CIE coordinates of (0.3328, 0.3380) at 5483 K. The relative electronic energy differences of the individual components within the hybrid systems based on theoretical computation suggested that the luminance of the nanocomposite comprised of RBL is dominantly mediated by FRET. The production of white-light-emitting diode (WLED) based on this technology have been demonstrated by solution deposition of the hybrid nanomaterials to the commercially available ultraviolet (UV) LED due to the versatility and chemical compatibility of the developed phosphors.

Page generated in 0.049 seconds