• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 566
  • 112
  • 109
  • 82
  • 36
  • 25
  • 24
  • 14
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1195
  • 170
  • 155
  • 132
  • 98
  • 95
  • 89
  • 85
  • 84
  • 83
  • 83
  • 80
  • 79
  • 77
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Curdlan 1,3-Beta-Glucans: A New Platform for Polymer Drug Delivery

Lehtovaara, Benjamin 18 April 2011 (has links)
1,3-β-glucans are a class of natural polysaccharides with unique pharmacological properties and the ability to form triple helical structures and resilient gels. Curdlan and other 1,3-β-glucans have found application pharmacologically in the treatment of cancers and acceleration of wound healing in humans and in the impartation of infection resistance in animal husbandry. Structurally, these polysaccharides have found application in food science as thermal gels, in nanostructure formation as helical scaffolds, and in drug delivery as nanocarriers for drugs and as inclusion complexes with polynucleotides. A literature review of the important work on Curdlan research reveals two streams of research: investigation of the pharmacological significance of these polymers and their application in increasing host immunocompetency and investigation of the nature of the triple helix and its application in a variety of fields from food gels to drug delivery. Two significant contributions to the field of Curdlan research have been completed including 1) The development of a Curdlan nanoparticle drug delivery platform and 2) A new multi-component liquid crystalline hydrogel providing a new route to form polynucleotide inclusion complexes with Curdlan for gene delivery. The developed nanoparticle platform exhibited high encapsulation of chemotherapeutic drugs and a 24-hour controlled release with a particle size of 109.9 nm. The liquid crystalline hydrogel exhibited homogeneous inclusion of DNA into amorphous and crystalline phases of Curdlan and delayed and triggered release of polynucleotide content. This work has been a significant demonstration of the potential of Curdlan as a new polymer for multi-functional drug delivery.
102

Quasi-homogeneous gold and bimetallic nanoparticle catalysts

Hou, Wenbo 13 August 2008 (has links)
The research in this thesis involves the synthesis and characterization of nanoparticle catalysts for oxidation reactions. It includes two projects: 1) polymer-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts for alcohol oxidation reactions, and 2) oxidative stabilities and catalytic activities of thiolate- and dithiolate-protected Au monolayer-protected clusters (MPCs).<p>n the first project, alcohol oxidations under mild conditions using polyvinylpyrrolidone (PVP)-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts in aqueous solutions have been investigated. The catalytic activities of the nanoparticles towards the oxidation of benzyl alcohol, 1-butanol, 2-butanol, 2-buten-1-ol and 1,4-butanediol indicate that bimetallic 1:3 Au:Pd nanoparticles have higher catalytic activities than Au, Pd and other bimetallic AuPd nanoparticles, and that selectivities towards specific products can often be tuned using bimetallic particles. In addition, advantages and disadvantages for the use of such nanoparticle catalysts as mild, environmentally-friendly oxidation catalysts have been examined. This work has recently been published in the Journal of Catalysis.<p>In the second project, 1-dodecanethiolate-, dithiolate-, and 1:1 mixed 1-dodecanethiolate/dithiolate-protected Au MPCs have been synthesized and their thermal stability, oxidative stability in the presence of oxygen and cyanide anions have been studied. These systematic investigations reveal the stability of Au MPCs can be tuned by choosing different thiolate ligands and oxidation conditions. Partially-oxidized thiolate-protected Au MPCs which have substrate-accessible surfaces and are stabilized by residual thiolate ligands show indications they will be promising catalysts. The catalytic activities of 1-dodecanethiolate-, dithiolate-, and 1:1 mixed 1-dodecanethiolate/dithiolate-protected Au MPCs for catalytic 4-nitrophenol reduction with sodium borohydride were investigated, and all the Au MPCs showed high catalytic activity for this reaction.
103

Early stage sintering of nanosized SnO2 and laser fragmentation of sub-micron SnO2 powders in water

LU, Hui-Di 22 June 2011 (has links)
An onset coarsening-coalescence event based on the incubation time of cylindrical mesopore formation and a significant decrease of specific surface area by 50% relative to the dry pressed samples was determined by N2 adsorption-desorption hysteresis isotherm for cassiterite SnO2 nanoparticles (rutile-type structure with bimodal size distribution). In the temperature range of 800-1100oC, the nanoparticles underwent onset sintering coupled with coarsening-coalescence without appreciable polymorphic transformation or decomposition of SnO2. The apparent activation energy of such a rapid process for SnO2 nanoparticles was estimated as 75 ¡Ó 5 kJ/mol, respectively. The minimum temperature for sintering/coarsening/coalescence of the SnO2 nanoparticles is 735oC based on the extrapolation of steady specific surface area reduction rates to null. PLA fragmentation of cassiterite SnO2 powder (rutile type, 20-50 nm in size) in water was conducted under Q-switch mode (532 nm, 400 mJ per pulse) having laser focal point fixed at 5, 10, 15 and 20 mm beneath the water level for an accumulation time of 5, 15, 20 and 30 min at 10 Hz. The 532 nm laser incidence suffered little water absorption and was effective to produce cassiterite nanocondensates as small as 5 nm in diameter and occasional nanocondensates of £\-PbO2-type structure more or less in coalescence. The combined effects of nanosize, internal compressive stress and H+ and Sn2+ co-signature in the lattice may account for a lower minimum band gap.
104

Catalytic Nanoparticle Additives in the Combustion of AP/HTPB Composite Solid Propellant

Kreitz, Kevin R. 2010 December 1900 (has links)
Presented in this thesis is a study of the effects of nano-sized particles used as a catalytic additive in composite solid propellant. This study was done with titanium oxide (titania)-based particles, but much of the findings and theory are applicable to any metal oxide produced by a similar method. The process required for efficiently producing larger batches of nanoparticle additives was seen to have a significant impact on the effectiveness of the additive to modify the burning rate of composite propellant consisting of ammonium perchlorate (AP) and hydroxyl terminated polybutadiene (HTPB). Specifically, titania was seen to be both an effective and ineffective burning rate modifier depending on how the nanoparticle additive was dried and subsequently heat treated. Nanoadditives were produced by various synthesis methods and tested in composite propellant consisting of 80 percent AP. Processability and scale-up effects are examined in selecting ideal synthesis methods of nanoscale titanium oxide for use as a burning rate modifier in composite propellant. Sintering of spray-dried additive agglomerates during the heat-treating process was shown to make the agglomerates difficult to break up during mixing and hinder the dispersion of the additive in the propellant. A link between additive processing, agglomerate dispersion mechanics and ultimately catalytic effect on the burning rate of AP/HTPB propellants has been developed by the theories presented in this thesis. This thesis studies the interaction between additive dispersion and the dispersion of reactions created by using fine AP in multimodal propellants. A limit in dispersion with powder additives was seen to cause the titania catalyst to be less effective in propellants containing fine AP. A new method for incorporating metal oxide nanoadditives into composite propellant with very high dispersion by suspending the additive material in the propellant binder is introduced. This new method has produced increases in burning rate of 50 to 60 percent over baseline propellants. This thesis reviews these studies with a particular focus on the application and scale-up of these nanoparticle additives to implement these additives in actual motor propellants and assesses many of the current problems and difficulties that hinder the nanoadditives’ true potential in composite propellant.
105

Treatment of Nanosized TiO2-Containing Organic Wastewater by a Simultaneous Electrocoagulation/Electrofiltration Process

Chuang, Chih-Chuan 30 July 2004 (has links)
In this study, nanosized TiO2-containing organic wastewater was treated with a simultaneous electrocoagulation/electrofiltration (EC/EF) process using either a recirculation mode or a flow-through mode. In the EC/EF treatment module, iron and stainless steel (SS 304) were respectively selected as the anode and cathode, and polyvinylidene fluoride (PVDF) with a nominal pore size of 0.1 £gm was used in this work. Applied electric field strength (EFS), transmembrane pressure (TMP), and crossflow velocity (CFV) were selected as the operating parameters for studying their effects on permeate qualities and other performance criteria. In the recirculation mode, the residual chemical oxygen demand (COD) was found to decrease with increasing EFS up to the critical EFS (i.e., 166.7 V/cm) and leveled off. The optimal operating conditions were determined to be an EFS of 166.7 V/cm, a TMP of 1 kgf/cm2, and a CFV of 0.22 cm/s. Under the optimal operating conditions, the removal efficiencies for turbidity, conductivity, total dissolved solids (TSD), and titanium were determined to be 98.7%, 95.1%, 95.8%, and 99.9%, respectively. By using the same operating conditions except in the flow-through mode, the corresponding removal efficiencies were found to be 98.1%, 92.3%, 93.1%, and 99.9%, respectively. Experimental results also showed that the flow-through mode yielded a higher filtration rate than that of the recirculation mode (namely, 5.05 mL/min versus 4.75 mL/min). This is an indication of a lower extent of membrane fouling for the flow-through mode. This was also evidenced by the scanning electron microscope (SEM) micrographs of the post-treatment membranes. In the recirculation mode, a proper practice of backflushing (e.g., a period of 60 min and a duration of 0.5 min) was found to extend the service life of the membrane and to enhance the permeate flux. I so doing, a minimum treatment rate of 90L/hr with a treatment cost of NT$68.10 per cubic meters would be resulted. Permeate obtained was found to meet the criteria of make-up water for cooling towers. Overall speaking, the simultaneous EC/EF treatment module employed in this work is capable of treating nanosized TiO2-containing organic wastewater for the purpose of reclamation.
106

Fast Protein Digestion with the Assistance of Magnetic Nanoparticle Coated with Trypsin and Detection of Trace Protein with Assistance of Liposome encapsulated signal material and MALDI-TOF

Lin, Meng-Fang 26 June 2006 (has links)
no
107

TiO2-mediated photocatalytic degradation of phenols

Liao, Yu-ling 11 July 2007 (has links)
Crystalline TiO2 nanoparticles were synthesized by hydrolysis of titanium (IV) isopropoxide (TTIP) in the Aerosol OT (AOT)¡Ðcyclohexane microemulsion at controlled temperature. The influence of various reaction conditions, such as mixing energy ( ), [AOT] concentration (W), [TTIP] concentration (R), temperature (T), and aging (t) on the particle size were investigated. The nano-TiO2 particles were characterized for specific surface area (Brunauer-Emmett-Teller, BET) in addition to X-ray diffraction (XRD) and X-ray spectroscopy (XPS) as to determine the particle size, crystalline state, chemical composition, surface charge, and binding energy. The photocatalytic activity was assessed using methylene blue as probe. Results showed that the particle size was in the range from 13.7 to 31.4 nm based on BET measurements. The size of the particle grows with mixing energy until log ( ) = 2.02; further increase in mixing rate caused particle breakup. In micelle solution, the particle size decreased with increase in W. In true solution the particle size increased with W. However, increase in R increased the particle size which reached a maximum value at a critical value of log R = -0.26, then decreased upon further increase in R. The activation energy (Ea) was calculated using Arrenhius plot and a value of -5.96 and -2.17 kJ mol-1 was obtained. Results of particle size analysis from XRD and BET were consistent with each other. Crystalline pattern was proved to be anatase. Furthermore, the photocatalytic activity appeared to optimum with particle size between 22.0-25.1 nm and best crystalline pattern. Titanium dioxide (TiO2) synthesized using the thermal hydrolysis method in our laboratory was used as the photocatalyst in this study to degrade low concentration phenol in aqueous solution. A 150 mL batch reactor was used to carry out the degradation of 0.385 mM phenol solution (pH = 6.5) in room temperature (25 oC) with 0.5 g L-1 TiO2 and irradiated with 10.8 mW cm-2 light intensity for 8 hours. Major intermediate products include hydroquinone (HQ) with the highest quantity followed by catechol (CA), p-benzoquinone (BQ), resorcinol (RES); tri-hydroquinone (THQ) is the secondary intermediate. The by-products consist of 6 organic acids including the six-carbon trans, trans-muconic acid (t,t-MA), the four-carbon maleic acid (MA), the three-carbon propionic acid (PA), the two-carbon oxalic acid (OA) and acetic acid (AA) as well as the one-carbon formic acid (FA). Among these acids, oxalic acid is the most abundant followed by formic acid; the six-carbon t,t-MA is one of the by-products with a lagged formation period. The pathway of intermediate product formation was mathematically calculated and simulated using first-order reaction kinetics models. The reaction rate constants were statistically calculated using functions provided in Microsoft Excel 2003; the simulated results show that the predicted and measured concentrations of the reactant and products in samples collected at various times are consistent.
108

The Studies of Self-Assembled Pyridyl Alkanethiol Derivates Monolayer on Gold Clusters

Lin, Yung-Sing 10 July 2003 (has links)
none
109

Synthesis and electrochemical characterization of highly monodisperse dendrimer-templated monolayer protected clusters

Kim, Yong-Gu 12 April 2006 (has links)
We described the synthesis of multilayer organic thin films prepared by sequential vapor-phase coupling of monomers. The reactions were carried out at room temperature and atmospheric pressure. Films prepared using up to six sequential coupling reactions are reported. Homobifunctionalized monomers, such as hexamethylenediamine, react primarily via a single endgroup rather than cross coupling to the reactive surface via both reactive groups. We synthesized bifunctionalized polyamidoamine (PAMAM) dendrimers having both quaternary ammonium groups and primary amines on their periphery were prepared. The high positive charge on the surface of these dendrimers prevents agglomeration, and the unquanternized amine groups provide a reactive handle for immobilizing the dendrimer-encapsulated nanoparticles onto surfaces. We prepared highly monodisperse, 1-2 nm diameter Au nanoparticles using bifunctionalized PAMAM dendrimers as templates. The synthesis is carried out in water, takes less than 30 min, and requires no subsequent purification. The high monodispersity is a function of the template synthesis, which avoids size variations arising from random nucleation and growth phenomena, and the use of magic number equivalent ratios of AuCl4-/dendrimer. We investigated the electrochemical properties of Au, Pd and PdAu monolayer-protected clusters (MPCs), prepared by dendrimer-templating and subsequent extraction, are described. Purification of the extracted Au, Pd and PdAu nanoparticles was not required to obtain well-defined differential pulse voltammetry peaks arising from quantized double-layer charging. The calculated sizes of the nanoparticles were essentially identical to those determined from the electrochemical data. The capacitance of the particles was independent of the composition of core metal.
110

Superlattice Array of Alkanethiolate and Alkanecarboxylate Protected Gold and Silver Nanoparticles

Chen, Wei-ting 23 June 2008 (has links)
¡@Complex nano-architectures of different materials have very interesting geometry. Combining different metallic nanoparticles should allow the manufacture of novel nanocomposite materials with a plethora of exploitable electronic, optical, and magnetic properties. ¡@Thiolate-capped Au nanoparticles prepared by Brust-Schiffrin two phase method and carboxylate-capped Ag nanoparticles prepared by our one-step synthetic method are reported. ¡@We also developed and prepared Ag colloidal solution which can be used to form a high valuable conductive thin film by spin coating on Si wafer. Specific resistivity of 6.097 £g£[¡Ecm for the silver metallic film (0.7 £gm) on the Si wafer can be simply produced by thermal annealing of Ag MPCs film under an atmosphere of 10 % H2-90 % N2 at 300 ¢J for 1 h. Furthermore, it can be applied to make a micro-circuit by ink-jet printing technique. ¡@The characterizations of TEM, PXRD, UV-Visible, NMR, FT-IR, ESCA, TGA, TA-MS, EI-MS and SEM of Au and Ag nanoparticles are described. ¡@We hope the thiolate-capped Au nanoparticles and carboxylate-capped Ag nanoparticles could spontaneously self-connect to form the nanoscale alloy superlattice structure by the molecular recognizable bifuctional linkage.

Page generated in 0.3144 seconds