• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 4
  • 1
  • Tagged with
  • 45
  • 17
  • 15
  • 14
  • 12
  • 12
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The design of a CMOS sensor camera system for a nanosatellite /

Baker, Eric Albert. January 2006 (has links)
Thesis (MScIng)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
12

A system on chip based error detection and correction implementation for nanosatellites

Hillier, Caleb Pedro January 2018 (has links)
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2018. / This thesis will focus on preventing and overcoming the effects of radiation in RAM on board the ZA cube 2 nanosatellite. The main objective is to design, implement and test an effective error detection and correction (EDAC) system for nanosatellite applications using a SoC development board. By conducting an in-depth literature review, all aspects of single-event effects are investigated, from space radiation right up to the implementation of an EDAC system. During this study, Hamming code was identified as a suitable EDAC scheme for the prevention of single-event effects. During the course of this thesis, a detailed radiation study of ZA cube 2’s space environment is conducted. This provides insight into the environment to which the satellite will be exposed to during orbit. It also provides insight which will allow accurate testing should accelerator tests with protons and heavy ions be necessary. In order to understand space radiation, a radiation study using ZA cube 2’s orbital parameters was conducted using OMERE and TRIM software. This study included earth’s radiation belts, galactic cosmic radiation, solar particle events and shielding. The results confirm that there is a need for mitigation techniques that are capable of EDAC. A detailed look at different EDAC schemes, together with a code comparison study was conducted. There are two types of error correction codes, namely error detection codes and error correction codes. For protection against radiation, nanosatellites use error correction codes like Hamming, Hadamard, Repetition, Four Dimensional Parity, Golay, BCH and Reed Solomon codes. Using detection capabilities, correction capabilities, code rate and bit overhead each EDAC scheme is evaluated and compared. This study provides the reader with a good understanding of all common EDAC schemes. The field of nanosatellites is constantly evolving and growing at a very fast speed. This creates a growing demand for more advanced and reliable EDAC systems that are capable of protecting all memory aspects of satellites. Hamming codes are extensively studied and implemented using different approaches, languages and software. After testing three variations of Hamming codes, in both Matlab and VHDL, the final and most effective version was Hamming [16, 11, 4]2. This code guarantees single error correction and double error detection. All developed Hamming codes are suited for FPGA implementation, for which they are tested thoroughly using simulation software and optimised.
13

Ceramic coaxial resonator filter in a CubeSat system

Bakam Nguenouho, Odette Sandrine January 2017 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2017. / RF and microwave filters can be implemented using ceramic coaxial resonators. This technology has been widely employed in nanosatellite communications systems recently, owing to its large quality factor (Q), permitting them to have low loss and narrow bandwidth. Features such as high selectivity, high power handling, excellent rejection, and low passband insertion loss are just a few of the key performance areas offered by ceramic coaxial resonators. This feature makes them suitable for use in bandpass filters. Applications with demanding specifications requiring low volume and mass make use of this technology. Fulfilling the required performance goals can be challenging, given the size and weight restriction. Difficulties such as finding the correct length of resonators and the coupling capacitors’ structure to meet the size restriction, limit the type of ceramic coaxial resonators to use. This thesis presents the design of a bandpass filter using ceramic coaxial resonators, which provides evidence of the concept for F’SATI’s future needs. This design will be used in an imminent space mission and the intention is to mount the bandpass filter in the receiver communications system. An intensive investigation was conducted into the use of filters for nanosatellite communication systems. The Chebyshev LC ladder low pass prototype was used to derive the conventional bandpass filter. Thereafter, the coupled resonator bandpass filter was derived using the conventional bandpass filter topology combined with the admittance inverter. Following this, using the ceramic coaxial resonators datasheet and information provided by the manufacturers, the coupled resonator bandpass filter was converted into a 3D model for further simulations, using CST Microwave Studio®. The ceramic coaxial resonator filter fabricated using Rogers’s material provided satisfactory results at its operating frequency between 2.2 GHz and 2.3 GHz. A radiation level test was performed on the filter to justify the use of the metallic enclosure. The test presented a low level of radiation measured at the filter operating frequency (2.25 GHz). The filter was also subjected to temperature cycling. / French–South African Institute of Technology (F’SATI) National Research Foundation (NRF)
14

Design and implementation of a high data rate QPSK demodulator for nanosatellites

Biyoghe, Joel S. January 2017 (has links)
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2017. / This dissertation presents the development of a quadrature phase shift keying (QPSK) demodulator for nanosatellites that complies with both the limited resources associated with nanosatellites as well as the flexibility and configurability required for a software defined radio (SDR) platform. This research project is a component of a bigger project, which is to develop a high-speed receiver for nanosatellites, and aims to provide a practical solution to the need for communication technologies that support emerging nanosatellite applications, such as Earth observation and communications. The development of the QPSK demodulator follows an all-digital implementation approach. The main reason for selecting this approach is to have a system that is flexible and reconfigurable to comply with the SDR requirements. Another reason for selecting this approach is to comply with the low noise system, low power consumption as well as the small size and weight requirements associated with nanosatellites. The QPSK demodulator is implemented on an IGLOO2 Field Programmable Gate Array (FPGA), due to its robustness to radiation and high-speed capability. Initially, the techniques used to design each subsystem of the QPSK demodulator are selected. Then, algorithms to digitally implement the designed subsystems are produced. Thereafter, the code for the digital QPSK demodulator is written and verified in Matlab first. The simulation of the Matlab-based QPSK demodulator performs satisfactorily. Subsequently, the code to implement the QPSK demodulator on an FPGA (IGLOO2) has been written in Libero, using VHSIC Hardware Description Language (VHDL). The resulting FPGA-based QPSK demodulator has been emulated in Libero (an integration and development environment (IDE) for Microsemi FPGAs) using a test-bench as well as other analysis tools. The test-bench results are visualized using Modelsim. The results show that the demodulator can support data rates up to 13.25 Mbps if 16 samples-per-symbols are used, and up to 26.5 Mbps if 8 samples-per-symbols are used. It also has a very good bit-error-rate performance, which is simulated to be within a factor of 5 of the theoretical limit of QPSK modulation. Finally, the demodulator consumes less than 15 mW at the maximum operating speed. and has been coded to mitigate the effects of space radiation and noise contriution by the demodulator itself.
15

Preliminary System Development and Detailed Structural Design and Analysis for the CanX-7 Nanosatellite

Singarayar, Fiona 27 November 2012 (has links)
Satellites placed in LEO can remain there for an inde finite period of time. To reduce the density of this orbit so as to avoid potential collisions with other satellites, the IADC has published a report that suggests any satellite in LEO should de-orbit within 25 years. CanX- 7 is a de-orbiting technology demonstration mission intended to help solve the global space debris problem. The work summarized in this thesis describes the author's contribution to the CanX-7 preliminary system development, as well as to the deployment detection and structural subsystems. Discussed herein are the challenges of carrying forward multiple designs in parallel and the factors and design trades that aid the decision-making process. This thesis not only presents the description of the final design of the nanosatellite, but also the evolution of the spacecraft from when it was initially envisioned in 2010 to its current state at the time of this writing.
16

Preliminary System Development and Detailed Structural Design and Analysis for the CanX-7 Nanosatellite

Singarayar, Fiona 27 November 2012 (has links)
Satellites placed in LEO can remain there for an inde finite period of time. To reduce the density of this orbit so as to avoid potential collisions with other satellites, the IADC has published a report that suggests any satellite in LEO should de-orbit within 25 years. CanX- 7 is a de-orbiting technology demonstration mission intended to help solve the global space debris problem. The work summarized in this thesis describes the author's contribution to the CanX-7 preliminary system development, as well as to the deployment detection and structural subsystems. Discussed herein are the challenges of carrying forward multiple designs in parallel and the factors and design trades that aid the decision-making process. This thesis not only presents the description of the final design of the nanosatellite, but also the evolution of the spacecraft from when it was initially envisioned in 2010 to its current state at the time of this writing.
17

X-band antenna design for nano-satellite applications

Maqina, Sinamandla Mvuyisi January 2018 (has links)
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2018. / This research report discusses feasible designs of conformal antennas that provide a proof of concept for the French South African Institute of Technology’s future needs. The design is to be used in forthcoming space missions and the intention is to mount the antenna on the surface of a spacecraft. Hence, a low profile is mandatory along with good circular polarisation radiation characteristics. Microstrip patch antennas have been chosen for this purpose simply because they have low profile and conform to most structures, thus fulfilling the requirements stated above. All the designs that are featured in this thesis were modelled and validated using the electromagnetic simulation software FEKO and prototypes were built and tested. The simulations and measured results are supplemented by theory. Sometimes it can be challenging to design and develop an antenna that fulfils the required performance goals given the size and weight restrictions that are specified for nano-satellite technology. Therefore, the first phase of this project finds a good balance between the criteria set for CubeSat platforms and antenna performance. The second phase is validation. Single patch antennas and a sequential rotated patch array were designed, built and tested. The sequential rotated patch array offers considerable improvements in performance when compared to single patch antennas. For instance, the 3 dB axial ratio bandwidth increased to 9.6 % from 2 % when a sequential rotated array was used. The CubeSat normally flies in the inclined regions of the low Earth orbit (LEO). This area has high-energy auroral electron fluxes, in which the high-density electrons build up on ungrounded surfaces of spacecraft and cause discharge arcing. The discharge can affect the satellite operation and, in the worst case, cause permanent damage to the components. A mitigation technique by means of a bleeding path provides a quick route to ground and the space-qualified material that is used will ensure that the antenna is robust enough to survive this.
18

Development of a power distribution module for a nanosatellite

Maleka, Motlokwe January 2013 (has links)
Thesis submitted in partial fulfilment of the requirements for the degree Magister Technologiae: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2013 / The space environment is characterised by harsh radiation, extreme temperatures and vacuum. Electronics subsystems for satellite applications are designed to be fault tolerant and robust enough to survive this environment. A power distribution module (PDM) for a CubeSat nanosatellite application is developed here, with the aim to distribute power to CubeSat subsystems reliably. The PDM prototype is carefully designed with reference to an extensive literature study. The study dwells on the low Earth orbit (LEO) space environment, critically identifying radiation sources and temperature ranges in the LEO. The study further investigates traditional analogue techniques of logic circuit design using bipolar junction transistors (BJTs) which are known for their higher tolerance to radiation sources as compared to recent integrated circuits (ICs). Careful consideration is given to different ways of designing a fault tolerant system. The study specifically looks at redundant circuit design within the limitations of weight and space of a nanosatellite. Possible electrical faults in power systems are identified, which include over-currents, over-voltages, over-temperatures, inrush currents and latchup. This study shows that identified faults generally are overcurrents. A power switch is included in each power distribution channel to trip the current in case a faulty condition is detected. The PDM is designed to have eight power output distribution channels to allow a subsystem load to connect to more than one channel, thereby meeting its power requirements. The PDM power channels are designed identically. Upon application, current limits are selected by a two-resistor divider circuit and connectors are used to connect to a required voltage bus at manufacturing time. The system’s functionality is tested and verified using an Arduino development board interfaced to all I2C devices as a master node, typically the on-board computer (OBC) in a real satellite mission. The system’s functionality in a Gamma irradiated laboratory environment is verified to perform as required. The PDM system is further tested in a temperature cycled chamber from -31°C to 61°C. The system survived the entire eight hour test duration of two cycles. It is observed that the system is fault tolerant to radiation sources up to 10 krad and the temperature limits mentioned. The PDM system is recommended as an additional module to the CubeSat electrical power subsystem (EPS), thereby improving the reliability of the power subsystem. Keywords: CubeSat, power channel, module, radiation, reliability, efficiency, I2C, prototype.
19

Design and analysis of multifunctional composite structures for nano-satellites

Ball, Jeffrey Craig January 2017 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2017. / The aim of this thesis is to investigate the applications of multifunctional compos- ite (MFC) technology to nano-satellite structures and to produce a working concept design, which can be implemented on future Cube-Satellites (CubeSats). MFC tech- nologies can be used to optimise the performance of the satellite structure in terms of mass, volume and the protection it provides. The optimisation of the structure will allow further room for other sub-systems to be expanded and greater payload allowance. An extensive literature view of existing applications of MFC materials has been conducted, along with the analysis of a MFC CubeSat structural design account- ing for the environmental conditions in space and well-known design practices used in the space industry. Numerical analysis data has been supported by empirical analysis that was done where possible on the concept material and structure. The ndings indicate that the MFC technology shows an improvement over the conventional alu- minium structures that are currently being used. Improvements in rigidity, mass and internal volume were observed. Additional functions that the MFC structure o ers include electrical circuitry and connections through the material itself, as well as an increase electromagnetic shielding capability through the use of carbon- bre composite materials. Empirical data collected on the MFC samples also show good support for the numerical analysis results. The main conclusion to be drawn from this work is that multifunctional composite materials can indeed be used for nano-satellite structures and in the same light, can be tailor-made to the speci c mission requirements of the satellite. The technology is in its infancy still and has vast room for improvement and technological development beyond this work and well into the future. Further improvements and additional functions can be added through the inclusion of various other materials.
20

Reconfigurable photovoltaic modules for robust nanosatellite power systems

Njouakoua Tchonko, Leon January 2018 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2018. / Until recently, the focus of most solar technology development for space was towards more efficient, more radiation-resistant and increasingly powerful arrays. During a space mission, solar cells are not only exposed to irradiation by electrons, but also to a range of other particles, like protons. Thus, solar cells on robust nanosatellites are extremely exposed to an environment, which includes the high-energy electrons and protons of the earth’s radiation belts, which leads towards the degradation process of the individual solar cell. Solar cell radiation shielding design ensures the protection of the solar cells from the particular radiation environment found in space. While the design principles of a solar photovoltaic automatic switching fault tolerant system which can detect and bypass faulty photovoltaic cells will be presented through this research work. The ability of such a system to be reconfigured using implemented switching matrix system makes it efficient under various environments and faulty conditions. / National Research Foundation (NRF)

Page generated in 0.0816 seconds