• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 38
  • 11
  • 10
  • 9
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 259
  • 44
  • 38
  • 35
  • 33
  • 30
  • 29
  • 29
  • 29
  • 27
  • 26
  • 24
  • 23
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Characterization of the Immune Stimulated Release of Extracellular Vesicles from Murine Cells

Norrie, Andrew 31 March 2021 (has links)
Introduction: Viruses, extracellular vesicles (EVs) and endogenous retroviruses (ERVs) are types of sub-micron particles which are known to be released from a vast range of cell types, across many species. There are many medically relevant sub-micron particles which can enter healthy cells and enable the intercellular delivery of functional host-derived and foreign products, through their enclosed lipid layers. While multiple particle subsets have been identified, many of the properties, behaviors and biochemical functions have not been fully described and have yet to be characterized. Materials and Methods: CD4⁺ naïve T-cells were isolated from female C57BL6/N mice and stimulated with varying concentrations of PMA/I. In addition to concentration, the length of PMA/I activation was assessed. Supernatants and cells were harvested, filtered, and stained to be subsequently analyzed by Nanoscale Flow Cytometry, Nanoparticle Tracking Analysis and Flow Cytometry. Particle populations were quantified and sorted by size, by NTA. Labelling dye CFSE was used in conjunction with fluorescently conjugated CD81 and CD9 antibodies to separate EVs, including exosomes, from background signal. Naïve T-cell purity, viability and levels of activation were assessed by flow cytometry using CD3, CD4 and CD62L antibodies and viability staining. Results: Increasing PMA concentration led to a global increase in particles by T-cells and a specific increase in smaller particle production and were demonstrated to be significant by Welch’s T-test, when compared to non-activated and DMSO controls (p<0.0001). In addition to concentration, activation length also correlated with increases in total particle counts and a specific increase in the secretion of smaller particles in comparison to non-activated and DMSO controls (p<0.0001). Labelling techniques by NFC revealed an increased presence of CFSE-CD81 positive and CFSE-CD9 positive particles secreted by T-cells, treated for 24 hours, compared to the 0- and 12-hour timepoints. Conclusion: This work demonstrates preliminary steps and outlines methods to begin assessing discrete particle populations and subsets secreted by murine naïve T-cells. Being able to identify patterns of particle secretions by naïve T-cells, especially under immune-stimulated conditions, may be the solution to uncovering the necessary information on EV physiology, that is required to understand the roles EVs play in pathology and how these conserved pathways may lead conditions to become exacerbated. This knowledge is essential to uncovering the roles EVs play in pathophysiology, and in the development of novel rapid diagnostic tests, to screen for cancers, infections, autoimmune disorders, and numerous other pathological conditions.
112

Evolution of Ion-Induced Ripple Patterns - Anisotropy, nonlinearity, and scaling

Keller, A. January 2009 (has links)
This thesis addresses the evolution of nanoscale ripple patterns on solid surfaces during low-energy ion sputtering. Particular attention is paid to the long-time regime in which the surface evolution is dominated by nonlinear processes. This is explored in simulation and experiment. In numerical simulations, the influence of anisotropy on the evolution of the surface patterns in the anisotropic stochastic Kuramoto-Sivashinsky (KS) equation with and without damping is studied. For a strong nonlinear anisotropy, a 90 rotation of the initial ripple pattern is observed and explained by anisotropic renormalization properties of the anisotropic KS equation. This explanation is supported by comparison with analytical predictions. In contrast to the isotropic stochastic KS equation, interrupted ripple coarsening is found in the presence of low damping. This coarsening seems to be a nonlinear anisotropy effect that occurs only in a narrow range of the nonlinear anisotropy parameter. Ex-situ atomic force microscopy (AFM) investigations of Si(100) surfaces sputtered with sub-keV Ar ions under oblique ion incidence show the formation of a periodic ripple pattern. This pattern is oriented normal to the direction of the ion beam and has a periodicity well below 100 nm. With increasing ion fluence, the ripple pattern is superposed by larger corrugations that form another quasi-periodic pattern at high fluences. This ripple-like pattern is oriented parallel to the direction of the ion beam and has a periodicity of around one micrometer. Interrupted wavelength coarsening is observed for both patterns. A dynamic scaling analysis of the AFM images shows the appearance of anisotropic scaling at large lateral scales and high fluences. Based on comparison with the predictions of different nonlinear continuum models, the recent hydrodynamic model of ion erosion, a generalization of the anisotropic KS equation, is considered as a potentially powerful continuum description of this experiment. In further in-situ experiments, the dependence of the dynamic scaling behavior of the sputtered Si surface on small variations of the angle of incidence is investigated by grazing incidence small angle X-ray scattering (GISAXS). A transition from strongly anisotropic to isotropic scaling is observed. This indicates the presence of at least two fixed points in the system, an anisotropic and an isotropic one. The dynamic scaling exponents of the isotropic fixed point are in reasonable agreement with those of the Kardar-Parisi-Zhang (KPZ) equation. It remains to be seen whether the hydrodynamic model is able to show such a transition from anisotropic to isotropic KPZ-like scaling.
113

Plasmonically enhanced photonic inactivation of pathogens

Nazari, Mina 29 September 2019 (has links)
Infectious pathogens are a prominent threat to human health in the world. There is a ubiquitous need for safe and reliable pathogen inactivation in the entire health care sector and pharmaceutical industry. Unfortunately, existing chemical treatment methods for virus inactivation have shortcomings as they introduce toxic chemicals or alter the structure of the products, which often pose significant side effects. Furthermore, considering the alarming growth of antibiotic resistances and hospital associated microbial infections, there is an urgent need for alternative pathogen inactivation strategies. Femtosecond (fs) pulsed laser irradiation technique is a promising solution free of added toxic chemicals and does not require the invention of new antibiotics for inactivation of virus contaminations in biological samples. Conventional pulsed laser techniques require relatively long irradiation times to achieve a significant viral inactivation. This thesis is focused on developing a novel photonic inactivation approach that is selective to pathogens, doesn’t compromise the protein-based pharmaceuticals, and is obtained without specific targeting to the pathogens. In our study, we report comparative studies using femtosecond laser pulses generated using Chirped Pulse Amplification (CPA) centered at either 800 nm or frequency-doubled 400 nm wavelengths, on the model bacteriophage φX174. We show that photonic inactivation is wavelength dependent and a Log Reduction Value (LRV) of > 6 in a 2 ml bacteriophage sample volume is achieved with less than 1 min of 400 nm laser exposure. Traditional methods for assaying viral inactivation require cell culture studies that can take up to 48–72 hours. We describe a solid-state nanopore technique that can monitor the effect of this optical viral therapy in under 10 minutes. By developing a statistical model based on the probability distribution function obtained from nanopore data, we monitor the survival fraction of viruses with low sample volume, high precision and fast assay time. Lastly, the purely photonic virus inactivation requires UV fs laser irradiation, which can risk photodamage to biologics. In our research, we introduce a novel inactivation approach that takes advantage of the strong light-matter interactions provided by noble metal nanoparticle (NP) structures that sustain plasmons. We report a plasmonically enhanced virus inactivation of Murine Leukemia Virus (MLV) via 10 s laser exposure with 800 nm fs pulses through gold nanorods, with LRV>3.7. We demonstrate that this NP-enhanced, physical inactivation approach is effective against a diverse group of pathogens, including both enveloped and non-enveloped viruses, and a variety of bacteria and mycoplasma. Importantly, the fs-pulse induced inactivation was selective to the pathogens and did not induce any measurable damage to co-incubated antibodies, or to large mammalian cells. Based on the observations, a model of selective pathogen inactivation based on plasmon enhanced cavitation is proposed.
114

Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor

M., Loretz, Sébastien, Pezzagna, Degen, C. L., Meijer, Jan Berend 04 October 2018 (has links)
We present nanoscale nuclear magnetic resonance (NMR) measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond material using oxidative etching in air. The close proximity of NV centers to the surface yielded large 1H NMR signals of up to 3.4 lT-rms, corresponding to ~330 statistically polarized or ~10 fully polarized proton spins in a (1.8 nm)3 detection volume.
115

Thermal and thermoelectric properties of nanostructured materials and interfaces

Liao, Hao-Hsiang 19 December 2012 (has links)
Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal diffusivity measurement system is used to measure the thermal diffusivitiy and heat capacity of bulk materials at high temperatures. With regards to the specific experiments, I examine the thermal conductivity and interface thermal conductance of two different types of nanocrystalline metallic alloys of nickel-iron and cobalt-phosphorus. I find that the thermal conductivity of the nanocrystalline alloys is reduced by a factor of approximately two from the thermal conductivity measured on metallic alloys with larger grain sizes. With subsequent molecular dynamics simulations performed by a collaborator, and my own electrical conductivity measurements, we determine that this strong reduction in thermal conductivity is the result of increased electron scattering at the grain boundaries, and that the phonon component of the thermal conductivity is largely unchanged by the grain boundaries. We also examine four complex bulk metallic glass (BMG) materials with compositions of Zr₅₀Cu₄₀Al₁₀, Cu<sub>46.25</sub>Zr<sub>44.25</sub>Al<sub>7.5</sub>Er₂, Fe₄₈Cr₁₅Mo₁₄C₁₅B₆Er₂, and Ti<sub>41.5</sub>Zr<sub>2.5</sub>Hf₅Cu<sub>42.5</sub>Ni<sub>7.5</sub>Si₁. From these measurements, I find that the addition of even a small percentage of heavy atoms (i.e. Hf and Er) into complex disordered BMG structures can create a significant reduction in the phonon thermal conductivity of these materials. This work also indicates that the addition of these heavy atoms does not disrupt electron transport to the degree with which thermal transport is reduced. / Ph. D.
116

Développement du modèle d’ion polarisable pour la modélisation de BaTiO3 / Development of a polarizable ion model for barium titanate (BaTiO3 )

Hartmann, Cintia 26 January 2018 (has links)
Les composés à base de matériaux ferroélectriques présentent un large éventail de propriétés d'un grand intérêt fondamental et industriel. Ils possèdent un couplage entre la polarisation, la contrainte, le champ électrique et la température et trouvent application dans les dispositifs à l'échelle nanométrique. Les ferroélectriques sont aujourd'hui par exemple déjà utilisés dans les condensateurs, les mémoires, les capteurs et les actionneurs. Afin de comprendre la relation entre leurs propriétés physiques exceptionnelles et leur structure, des méthodes numériques capables de simuler à l'échelle nanométrique sont souhaitées. Pour ce faire, le modèle d'ions polarisables (PIM) est appliqué, modèle dans lequel les ions sont considérés comme des espèces polarisables possédant des charges nominales. En regard des techniques de modélisation actuelles, l'utilisation de charges nominales devrait faciliter l'inclusion de diverses compositions et l'étude des défauts et des effets de surface. Les paramètres du PIM sont dérivés par une procédure d'ajustement sur des données de références obtenues par des calculs avec la théorie de la fonctionnelle de la densité (DFT). Pour une première étape vers la modélisation ferroélectrique avec PIM, l'accent est mis sur le développement d'un potentiel d'interaction pour le prototype ferroélectrique BaTiO3. BaTiO3 présente une séquence complexe de transition de phase (rhomboédrique, orthorhombique, tétragonale, cubique) qui est liée à de petites différences d'énergie de l'ordre de quelques meV/unité de formule. Pour cette raison, le développement d'un potentiel d'interaction pour BaTiO3 nécessite une grande précision pour décrire correctement l’équilibre entre les interactions à courte et à longue portée. Il a été démontré au cours de ce travail que des effets asymétriques du nuage d'électrons par rapport au noyau seraient nécessaires pour une représentation précise des forces à courte portée. Puisque de tels effets ne sont pas inclus dans le PIM, des erreurs de compensation dans la procédure d'ajustement entre les interactions à courte et à longue portée sont permises afin d'obtenir le meilleur ajustement global. Le PIM développé pour BaTiO3 reproduit plusieurs propriétés à température nulle. À température finie, le PIM prédit que la phase rhomboédrique sera stable jusqu'à 160K. Dans la plage de température comprise entre 160K et 210K, de fortes fluctuations de la polarisation et des paramètres de maille sont observées et aucune phase bien définie ne peut être distinguée. A partir de 210K, la phase cubique paraélectrique est atteinte. Le modèle PIM développé dans cette thèse peut être appliqué à des études à basse température dans la phase ferroélectrique rhomboédrique. Il peut donc être utilisé pour étudier les effets de surface ou des lacunes d'oxygène dans la phase rhomboédrique de BaTiO3 . / Ferroelectric based compounds present a wide range of properties which are from great fundamental and industrial interest on nanoscale. Ferroelectric based compounds possesses strong coupling between polarization, stress, electric field and temperature and are nowadays already used in capacitors, memories, sensors, and actuators. In order to understand the relationship between microstructure and the outstanding properties, numerical methods able to simulate at nanoscale are disired. For this propose, the Polarizable Ion Model (PIM) is employed that treats the ions as polarizable species with nominal charge. In comparison to current modelisation techniques, the use of nominal charges should facilitate the inclusion of various materials composition and the study of defect and surface effects. The pametrization of the model is derived by a fit on ab initio DFT reference calculations. For a first step towards ferroelectric modelling with PIM, the focus lies on the developpment of an interaction potential for the prototyp ferroelectric BaTiO3. BaTiO3 presents a complex phase transition sequence (rhombohedral, orthorhombic, tetragonal, cubic) that is related to small energy differences of the order of some meV/formula unit. Thus, the development of a reliable interaction potential requires high precision and a correct description of the balance between short range and long range interactions. It has been demonstrated during this work that for an accurate representation of the short range forces asymmetric size effects of the electron cloud with respect to the nucleus would be necessary. As such size effects are not included in the PIM, compensation errors in the fitting procedure between short range and long range interactions are allowed in order to obtain the best global fit. The developed PIM model reproduces several zero temperature properties of BaTiO3. At finite temperature the PIM predicts the rhombohedral phase to be stable up to 160K. In the temperature range between 160K and 210K strong fluctuations in polarization and cell parameters are observed and no well-defined phase can be distinguished. From 210K on, the average paraelectric cubic phase is reached.
117

Preparation and Application of Hierarchically Porous Monolithic Materials with Embedded Nanoscale Interfaces / ナノスケール界面を導入した階層的多孔構造をもつモノリス材料の合成と応用研究

Yang, Zhu 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19519号 / 理博第4179号 / 新制||理||1600(附属図書館) / 32555 / 京都大学大学院理学研究科化学専攻 / (主査)准教授 中西 和樹, 教授 北川 宏, 教授 有賀 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
118

Nanoscale Characterization of Electrolyte Diffusion, Interface Morphology Disruption and Surface Dynamics of Polymer Melt Films Adsorbed on Graphene

Yang, Feipeng January 2018 (has links)
No description available.
119

Funktionalisierte Kohlenstoffnanoröhren: Materialforschung in der Nanowelt

Klingeler, Rüdiger, Pichler, Thomas, Kramberger, Christian, Leonhardt, Albrecht, Müller, Christian, Büchner, Bernd 31 August 2007 (has links)
Thanks to their extraordinary properties, carbon nanotubes reveal a promising potential for applications on the nanometre scale. When filled with metals or ferromagnets, nano-wires and magnets with a protecting carbon shell are realised. Different synthesis routes are described, such as laser ablation and chemical vapour deposition. Probes for magnetic force microscopy based on ironfilled carbon nanotubes are presented, and demonstrate a high spatial resolution, with the carbon shells at the same time providing effective wear resistance. We show also the potential of carbon nanotubes for biomedical applications, in particular their suitability as magnetic nano-heaters, drug-carrier systems or sensors for diagnostic and therapeutic usage on the cellular level. / Außergewöhnliche Materialeigenschaften machen Kohlenstoffnanoröhren zu einem vielseitigen nanoskaligen Werkstoff. Füllt man sie zum Beispiel mit metallischen oder ferromagnetischen Materialien, so ergeben sich durch eine Kohlenstoffhülle geschützte „Nano- Kabel“ oder Nano-Magnete. Neben verschiedenen Syntheseverfahren wie der Laserablation und der Chemischen Gasphasenabscheidung werden grundlegende physikalische Eigenschaften sowie Anwendungen in der Messtechnik und in der Medizin vorgestellt. In der Magnetkraftmikroskopie versprechen magnetisch gefüllte Kohlenstoffnanoröhren eine hohe laterale Auflösung bei gleichzeitigem Schutz des magnetischen Messsensors durch die Außenhülle. Im Bereich der biomedizinischen Anwendungen stellen Kohlenstoffnanoröhren ein nanoskaliges Transportmedium dar, das zum Transfer von Funktionsmaterialien in einzelne Zellen, zum Beispiel für magnetische Sensorik oder für Medikamententransporte, angewendet werden kann.
120

[pt] MECANISMOS DE DEFORMAÇÃO MECÂNICA EM NANOESCALA DO NITRETO DE GÁLIO / [en] NANOSCALE MECHANICAL DEFORMATION MECHANISMS OF GALLIUM NITRIDE

PAULA GALVAO CALDAS 30 October 2015 (has links)
[pt] Neste trabalho foi estudada a deformação mecânica em filmes de GaN por nanoindentação. Um nanoindentador foi usado para induzir a nucleação de defeitos mecânicos na superfície das amostras de forma controlada. A morfologia das indentações e a microestrutura dos defeitos foram estudados com o uso da microscopia de força atômica e microscopia eletrônica de transmissão . Os resultados mostraram que nos estágios iniciais de deformação, o processo de nanoindentação promove o escorregamento em escala atômica de planos cristalinos que pode ser revertido se a carga é removida. Se a carga for aumentada ainda mais, a partir de uma tensão crítica, ocorre um grande evento pop-in com o escorregamento dos planos 1101, 1122 e 0001 produzindo então deformação plástica irreversível. A influência dos dopantes na deformação mecânica foi estudada e os resultados mostraram que é mais difícil produzir deformação mecânica em filmes de GaN dopado com Si e dopado com Mg do que no filme não dopado. A autorrecuperação que ocorre após a retirada da ponta foi estudada utilizando cristais de ZnO com diferentes orientações. O mecanismo de ativação térmica dos loops de discordância foi estudado através da observação da influência da temperatura no processo de autorrecuperação parcial dos cristais. Medidas de catodoluminescência foram usadas para identificar as distribuições de tensão associadas à deformação plástica permanente mostrando que esta induz regiões de tensão trativa ao longo das direções a 1120 nos filmes de GaN dopado e não dopado. / [en] In this work, the mechanical deformation of GaN films was studied by nanoindentation. A nanoindenter was used to induce the nucleation of mechanical defects on the samples surfaces in a controlled manner. The morphology of the indentations and the microstructure of the defects were studied using atomic force microscopy and transmission electron microscopy. The results showed that in the early stages of deformation, the nanoindentation process promotes slip at the atomic scale of the pyramidal planes of the crystal that can be reversed if the load is removed. If load is further increased, locking of these atomic plains occur leading to a hardened crystal region. It acts as an extension of the tip of the indenter redistributing the applied stress. At a critical stress, a major pop-in event occurs with the slip of the 1101, 1122 and 0001 plains leading then to irreversible plastic deformation. The influence of doping on the mechanical deformation has been studied and the results showed that it is more difficult to produce mechanical deformation in GaN films doped with Si and Mg doped than in undoped films. The self-recovery that occurs after removal of the tip was investigated using ZnO crystals with different orientations. The mechanism of thermal activation of dislocation loops was studied by observing the influence of temperature on the self-recovery process of the crystals. Cathodoluminescence measures were used to identify the resulting stress distributions associated with permanent plastic deformation showing that this induces tensile regions along the a 1120 directions in doped and undoped GaN films.

Page generated in 0.0633 seconds