• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln / Of gold plasmons and excitons : synthesis, characterization and applications of gold nanoparticles

Bomm, Jana January 2012 (has links)
In dieser Arbeit wurden sphärische Gold Nanopartikel (NP) mit einem Durchmesser größer ~ 2 nm, Gold Quantenpunkte (QDs) mit einem Durchmesser kleiner ~ 2 nm sowie Gold Nanostäbchen (NRs) unterschiedlicher Länge hergestellt und optisch charakterisiert. Zudem wurden zwei neue Synthesevarianten für die Herstellung thermosensitiver Gold QDs entwickelt werden. Sphärische Gold NP zeigen eine Plasmonenbande bei ~ 520 nm, die auf die kollektive Oszillation von Elektronen zurückzuführen ist. Gold NRs weisen aufgrund ihrer anisotropen Form zwei Plasmonenbanden auf, eine transversale Plasmonenbande bei ~ 520 nm und eine longitudinale Plasmonenbande, die vom Länge-zu-Durchmesser-Verhältnis der Gold NRs abhängig ist. Gold QDs besitzen keine Plasmonenbande, da ihre Elektronen Quantenbeschränkungen unterliegen. Gold QDs zeigen jedoch aufgrund diskreter Energieniveaus und einer Bandlücke Photolumineszenz (PL). Die synthetisierten Gold QDs besitzen eine Breitbandlumineszenz im Bereich von ~ 500-800 nm, wobei die Lumineszenz-eigenschaften (Emissionspeak, Quantenausbeute, Lebenszeiten) stark von den Herstellungs-bedingungen und den Oberflächenliganden abhängen. Die PL in Gold QDs ist ein sehr komplexes Phänomen und rührt vermutlich von Singulett- und Triplett-Zuständen her. Gold NRs und Gold QDs konnten in verschiedene Polymere wie bspw. Cellulosetriacetat eingearbeitet werden. Polymernanokomposite mit Gold NRs wurden erstmals unter definierten Bedingungen mechanisch gezogen, um Filme mit optisch anisotropen (richtungsabhängigen) Eigenschaften zu erhalten. Zudem wurde das Temperaturverhalten von Gold NRs und Gold QDs untersucht. Es konnte gezeigt werden, dass eine lokale Variation der Größe und Form von Gold NRs in Polymernanokompositen durch Temperaturerhöhung auf 225-250 °C erzielt werden kann. Es zeigte sich, dass die PL der Gold QDs stark temperaturabhängig ist, wodurch die PL QY der Proben beim Abkühlen (-7 °C) auf knapp 30 % verdoppelt und beim Erhitzen auf 70 °C nahezu vollständig gelöscht werden konnte. Es konnte demonstriert werden, dass die Länge der Alkylkette des Oberflächenliganden einen Einfluss auf die Temperaturstabilität der Gold QDs hat. Zudem wurden verschiedene neuartige und optisch anisotrope Sicherheitslabels mit Gold NRs sowie thermosensitive Sicherheitslabel mit Gold QDs entwickelt. Ebenso scheinen Gold NRs und QDs für die und die Optoelektronik (bspw. Datenspeicherung) und die Medizin (bspw. Krebsdiagnostik bzw. -therapie) von großem Interesse zu sein. / In this thesis, the synthesis and optical characterization of spherical gold nanoparticles (NP) with diameters larger than ~ 2 nm, gold quantum dots (QDs) with diameters smaller than ~ 2 nm and gold nanorods (NRs) with different lengths are presented. In addition, a novel one-pot synthesis for the preparation of thermosensitive gold QDs is introduced. Gold NP solutions appear red colored due to their strong absorption in the visible range at ~ 520 nm. This absorption band is a result of surface plasmon resonance, which is caused by the coherent oscillation of conduction band electrons induced by an electromagnetic field. In contrast to spherical gold NPs, gold NRs show two surface plasmon bands due to their anisotropic shape, a transverse plasmon band at ~ 520 nm and a longitudinal plasmon band depending on the aspect ratio (length-to-width-ratio) of the gold NRs. If the size of the gold NPs decreases to values below ~ 2 nm, quantum-size confinement occurs and the surface plasmon band disappears. Additionally, the overlap between conduction band and valence band disappears, discrete electronic levels arise and a band gap is created. As a consequence of quantum confinement, the gold QDs show photoluminescence (PL) upon UV-irradiation. The gold QDs synthesized via the one-pot synthesis exhibit a broadband luminescence between 500 nm and 800 nm. The luminescence properties (emission peak, quantum yield, lifetime) strongly depend on the synthetic parameters like reaction temperature, stoichiometry and the surface ligand. Gold NRs and gold QDs were incoroporated into different polymers (e.g. cellulose triacetate). Polymer nanocomposite films showing optical anisotropy are obtainded by stretching polymer films containing gold NRs uniaxial in a tensile test machine. In addition to the optical characterization of gold NRs and QDs, their thermal behavior in solution as well as in different nanocomposites is studied. A shortening of the gold NRs or a transformation into spherical gold NP is observed, if the polymer nanocomposites containing gold NRs are heated above a temperature of 200 °C. The PL of the synthesized gold QDs strongly depends on the ambient temperature. An increase of PL quantum yield (QY) and PL lifetime occur, if the solutions are cooled. The best PL QY of 16.6 % was observed for octadecyl mercaptan capped gold QDs at room temperature, which could be improved to 28.6 % when cooling the solutions to -7 °C. Furthermore, optically anisotropic security labels containing gold NRs and thermosensitive security devices containing gold QDs are developed. Due to their unique optical properties, gold NRs and QDs are interesting candidates for optoelectronical as well as data storage devices and medical applications like biomedical imaging or cancer therapy.
2

Metallic Nanorod Arrays: Linear Optical Properties and Beyond

Kullock, René 29 June 2011 (has links) (PDF)
Arrays of free-standing metallic nanorods are promising candidates for sensors, switches and spectroscopy. They have structure sizes much smaller than the wavelength of visible light, feature a long-axis surface plasmonic resonance (LSPR) and show metamaterial-like properties. This thesis provides a detailed investigation of their linear optical properties and highlights some nonlinear optical aspects. By means of graded structures having a tunable LSPR and three different theoretical models -- a numerical multiple-multipole method (MMP) model, a semi-analytic collective surface plasmon (CSP) model and an analytic dipolar interaction model (DIM) -- the optical properties were analyzed. Using the DIM, the experimentally observed blueshift of the LSPR in comparison to a single nanorod is confirmed and a physical explanation is provided. The LSPR strongly depends on the angle of incidence and the rod diameter. However, for a varying length the changes are small with the long-axis mode showing a lower energy limit. The detailed arrangement of the nanorods and the azimuthal angle of the incoming light plays only a minor role for small nanorod separations. Similarly, the dependence on the metal is the same as for single particles, whereas the sensitivity to the surrounding dielectric is much stronger than in the single-particle case. For longer nanorods made of silver, angle-dependent higher-order modes are observed and reproduced using MMP. The CSP model is applied and Fabry-Pérot-like oscillations of the CSPs are found. The propagating nature of these modes leads to the discovery that the p component of the transmitted light experiences a phase jump and to the observation of polarization conversion inside the structures. Negative refraction is found in nanorod arrays; it is revealed that a negative energy flux occurs only within a bandwidth given by the LSPR of a single nanorod and the array resonance. For smaller wavelengths, the in-plane component of the Poynting vector reverses, leading to an (extraordinary) positive flux. At the LSPR itself, the flux parallel to the surface is found to be zero. The negative refraction is also exploited to mimic a nanolens with structure parameters that are infact technical realizable. In the visible regime the nanolens shows a NA of 1.06 and superlens-like features such as identical rotation and linear translation of image and object. The nonlinear measurements on graded structures are conducted using femtosecond pump-probe spectroscopy resulting in kinetics showing either an increased transmission or absorption with signal changes of up to 40%. By converting them to transient spectra and by comparison with the literature, electron distribution changes at the Fermi edge and hot electrons/phonons are identified as the main reasons for the changes. Probing at the inflection points of the LSPR reveals ultrafast signals. Using transient spectra they are traced back to a short blueshift of the LSPR. / Strukturen aus frei stehenden metallischen Nanostäbchen versprechen interessante An­wendungen als Sensoren, Schalter und in der Spektroskopie. Da ihre Strukturgrößen kleiner als die Wellenlänge des sichtbaren Lichtes sind, besitzen sie eine langachsige Oberflächen­plasmonenresonanz (LSPR) und weisen metamaterialartige Eigenschaften auf. In dieser Dissertation werden die linearen und nichtlinearen optischen Eigenschaften solcher Struk­turen im Detail untersucht. Mit Hilfe von Gradientenstrukturen, die eine durchstimmbare LSPR besitzen, und dreier theoretischer Modelle – eines numerischen Modells basierend auf der Methode der mul­tiplen Multipole (MMP), eines semianalytischen Modells kollektiver Oberflächenplasmonen (CSP) sowie eines analytischen dipolaren Interaktionsmodells (DIMs) – werden die op­tischen Eigenschaften analysiert. Unter Verwendung des DIMs wird die experimentell beobachtete Blauverschiebung der LSPR im Vergleich zur Resonanz eines Einzelstäbchens bestätigt und eine physikalische Erklärung dafür geliefert. Die LSPR ist stark vom Einfallswinkel und vom Stäbchendurch­messer abhängig. Im Unterschied dazu sind die Änderungen bei einer Längenvariation klein, wobei die langachsige Mode ein unteres Energielimit aufweist. Weiterhin haben die genaue Anordnung der Stäbchen und der azimutale Winkel des einfallenden Lichtes nur einen untergeordneten Einfluss. Die Abhängigkeit vom verwendeten Metall ist analog zu einem Einzelstäbchen, während die Empfindlichkeit in Bezug auf das Umgebungsmedium wesentlich stärker ist. Längere Nanostäbchen aus Silber zeigen winkelabhängige Moden höherer Ordnung, welche mittels MMP reproduziert werden können. Das CSP-Modell wird ebenfalls darauf ange­wendet, wobei Fabry-Pérot-artige Oszillationen der CSPs entdeckt werden. Die propa­gierende Natur der CSPs führt zur Entdeckung eines Phasensprungs der p‑Komponente des transmittierten Lichtes sowie zur Beobachtung von Polarisationskonversion in den Strukturen. Nanostäbchen-Arrays weisen außerdem negative Brechung auf. Es wird gezeigt, dass ein negativer Energiefluss nur in dem Wellenlängenbereich zwischen der LSPR der Einzelstäb­chen und der Arrayresonanz auftritt. Für kleinere Wellenlängen kehrt sich die in der Ebene befindende Poynting-Vektor-Komponente um, was zu einer (außerordentlichen) positiven Brechung führt. An der LSPR selbst ist der zur Strukturebene parallele Fluss Null. Die negative Brechung wird ferner ausgenutzt, um eine Nanolinse mit realistischen Struktur­parametern zu simulieren. Im sichtbaren Bereich zeigt sie eine NA von 1,06 und super­linsenartige Eigenschaften, wie eine identische Rotation und eine lineare Translation von Bild und Objekt. Die nichtlinearen Messungen an Gradientenstrukturen werden mittels Femtosekunden-Pump-Probe-Spektroskopie durchgeführt und liefern Kinetiken, welche entweder eine ver­stärkte Transmission oder eine verstärkte Absorption mit Signalstärken von bis zu 40% aufweisen. Durch Konvertierung in transiente Spektren und Vergleich mit der Literatur werden eine veränderte Elektronverteilung an der Fermi-Kante und heiße Elektronen/Pho­nonen als Ursache für die Änderungen gefunden. Das Abtasten mit dem Probe-Puls an den Wendepunkten der Resonanz offenbart ultraschnelle Signale. Mit Hilfe der transienten Spektren wird dies auf eine kurzzeitige Blauverschiebung der LSPR zurückgeführt.
3

Metallic Nanorod Arrays: Linear Optical Properties and Beyond

Kullock, René 19 April 2011 (has links)
Arrays of free-standing metallic nanorods are promising candidates for sensors, switches and spectroscopy. They have structure sizes much smaller than the wavelength of visible light, feature a long-axis surface plasmonic resonance (LSPR) and show metamaterial-like properties. This thesis provides a detailed investigation of their linear optical properties and highlights some nonlinear optical aspects. By means of graded structures having a tunable LSPR and three different theoretical models -- a numerical multiple-multipole method (MMP) model, a semi-analytic collective surface plasmon (CSP) model and an analytic dipolar interaction model (DIM) -- the optical properties were analyzed. Using the DIM, the experimentally observed blueshift of the LSPR in comparison to a single nanorod is confirmed and a physical explanation is provided. The LSPR strongly depends on the angle of incidence and the rod diameter. However, for a varying length the changes are small with the long-axis mode showing a lower energy limit. The detailed arrangement of the nanorods and the azimuthal angle of the incoming light plays only a minor role for small nanorod separations. Similarly, the dependence on the metal is the same as for single particles, whereas the sensitivity to the surrounding dielectric is much stronger than in the single-particle case. For longer nanorods made of silver, angle-dependent higher-order modes are observed and reproduced using MMP. The CSP model is applied and Fabry-Pérot-like oscillations of the CSPs are found. The propagating nature of these modes leads to the discovery that the p component of the transmitted light experiences a phase jump and to the observation of polarization conversion inside the structures. Negative refraction is found in nanorod arrays; it is revealed that a negative energy flux occurs only within a bandwidth given by the LSPR of a single nanorod and the array resonance. For smaller wavelengths, the in-plane component of the Poynting vector reverses, leading to an (extraordinary) positive flux. At the LSPR itself, the flux parallel to the surface is found to be zero. The negative refraction is also exploited to mimic a nanolens with structure parameters that are infact technical realizable. In the visible regime the nanolens shows a NA of 1.06 and superlens-like features such as identical rotation and linear translation of image and object. The nonlinear measurements on graded structures are conducted using femtosecond pump-probe spectroscopy resulting in kinetics showing either an increased transmission or absorption with signal changes of up to 40%. By converting them to transient spectra and by comparison with the literature, electron distribution changes at the Fermi edge and hot electrons/phonons are identified as the main reasons for the changes. Probing at the inflection points of the LSPR reveals ultrafast signals. Using transient spectra they are traced back to a short blueshift of the LSPR. / Strukturen aus frei stehenden metallischen Nanostäbchen versprechen interessante An­wendungen als Sensoren, Schalter und in der Spektroskopie. Da ihre Strukturgrößen kleiner als die Wellenlänge des sichtbaren Lichtes sind, besitzen sie eine langachsige Oberflächen­plasmonenresonanz (LSPR) und weisen metamaterialartige Eigenschaften auf. In dieser Dissertation werden die linearen und nichtlinearen optischen Eigenschaften solcher Struk­turen im Detail untersucht. Mit Hilfe von Gradientenstrukturen, die eine durchstimmbare LSPR besitzen, und dreier theoretischer Modelle – eines numerischen Modells basierend auf der Methode der mul­tiplen Multipole (MMP), eines semianalytischen Modells kollektiver Oberflächenplasmonen (CSP) sowie eines analytischen dipolaren Interaktionsmodells (DIMs) – werden die op­tischen Eigenschaften analysiert. Unter Verwendung des DIMs wird die experimentell beobachtete Blauverschiebung der LSPR im Vergleich zur Resonanz eines Einzelstäbchens bestätigt und eine physikalische Erklärung dafür geliefert. Die LSPR ist stark vom Einfallswinkel und vom Stäbchendurch­messer abhängig. Im Unterschied dazu sind die Änderungen bei einer Längenvariation klein, wobei die langachsige Mode ein unteres Energielimit aufweist. Weiterhin haben die genaue Anordnung der Stäbchen und der azimutale Winkel des einfallenden Lichtes nur einen untergeordneten Einfluss. Die Abhängigkeit vom verwendeten Metall ist analog zu einem Einzelstäbchen, während die Empfindlichkeit in Bezug auf das Umgebungsmedium wesentlich stärker ist. Längere Nanostäbchen aus Silber zeigen winkelabhängige Moden höherer Ordnung, welche mittels MMP reproduziert werden können. Das CSP-Modell wird ebenfalls darauf ange­wendet, wobei Fabry-Pérot-artige Oszillationen der CSPs entdeckt werden. Die propa­gierende Natur der CSPs führt zur Entdeckung eines Phasensprungs der p‑Komponente des transmittierten Lichtes sowie zur Beobachtung von Polarisationskonversion in den Strukturen. Nanostäbchen-Arrays weisen außerdem negative Brechung auf. Es wird gezeigt, dass ein negativer Energiefluss nur in dem Wellenlängenbereich zwischen der LSPR der Einzelstäb­chen und der Arrayresonanz auftritt. Für kleinere Wellenlängen kehrt sich die in der Ebene befindende Poynting-Vektor-Komponente um, was zu einer (außerordentlichen) positiven Brechung führt. An der LSPR selbst ist der zur Strukturebene parallele Fluss Null. Die negative Brechung wird ferner ausgenutzt, um eine Nanolinse mit realistischen Struktur­parametern zu simulieren. Im sichtbaren Bereich zeigt sie eine NA von 1,06 und super­linsenartige Eigenschaften, wie eine identische Rotation und eine lineare Translation von Bild und Objekt. Die nichtlinearen Messungen an Gradientenstrukturen werden mittels Femtosekunden-Pump-Probe-Spektroskopie durchgeführt und liefern Kinetiken, welche entweder eine ver­stärkte Transmission oder eine verstärkte Absorption mit Signalstärken von bis zu 40% aufweisen. Durch Konvertierung in transiente Spektren und Vergleich mit der Literatur werden eine veränderte Elektronverteilung an der Fermi-Kante und heiße Elektronen/Pho­nonen als Ursache für die Änderungen gefunden. Das Abtasten mit dem Probe-Puls an den Wendepunkten der Resonanz offenbart ultraschnelle Signale. Mit Hilfe der transienten Spektren wird dies auf eine kurzzeitige Blauverschiebung der LSPR zurückgeführt.

Page generated in 0.0512 seconds