Spelling suggestions: "subject:"optische hafteigenschaften"" "subject:"optische sensoreigenschaften""
1 |
Optical properties of semiconductor nanostructures in magnetic fieldGrochol, Michal 16 April 2007 (has links)
Es werden die exzitonischen Eigenschaften von Halbleiter-Quantengräben im Magnetfeld theoretisch untersucht. Unter Benutzung der Enveloppen-Näherung wird der Hamilton-Operator des Exzitons aufgestellt. Ein allgemeines Theorem für die diamagnetische Verschiebung (DMV) des exzitonischen Grundzustands wird abgeleitet. Im ersten Teil werden Effekte der Unordnung berücksichtigt. Die numerische Ergebnisse zeigen, daß die DMV ein Maß für die Lokalisierung der Wellenfunktion ist. Einzelne Exzitonzustände, wie sie für optische Nahfeldexperimente relevant sind, zeigen eine breite Verteilung der DMV-Werte, wobei der Mittelwert mit der Energie anwächst (abnehmende Lokalisierung). Die Absorptions- und Photolumineszenz-Spektren im Fernfeld werden mit dem Magnetfeld breiter. Unter Ausnutzung der strukturellen Information über die lokale chemische Zusammensetzung einer gegebenen Probe werden die statistischen Eigenschaften der Unordnung in einem realen Quantengraben analysiert. Das ermöglicht die numerische Erzeugung neuer Unordnungspotentiale, die dann für die Simulation der optischen Eigenschaften wie DMV-Statistik und Photolumineszenzspektren genutzt werden. Der Vergleich mit den experimentellen Daten für verschiedene Temperaturen zeigt eine sehr gute Übereinstimmung. Der zweite Teil dieser Dissertation beschäftigt sich mit Quantenpunkten und Quantenringen, die in einem Quantengraben eingebettet sind, und konzentriert sich auf den exzitonischen Aharonov-Bohm Effekt. Der persistente Strom und die Magnetisierung werden berechnet. Für zirkuläre Symmetrie wird der enge Zusammenhang zwischen der oszillatorischen Komponente der Exziton-Energie und dem persistenten Strom aufgezeigt. Für nichtzirkuläre Ringe sind die Oszillationen ebenfalls beobachtbar, jedoch mit kleinerer Amplitude. Eine Untersuchung der Exzitonenkinetik zeigt die wichtige Rolle nichtradiativer Prozesse auf und setzt Grenzen für die Beobachtbarkeit der Oszillationen und für die Auslöschung der Photolumineszenz. / Excitonic properties of semiconductor quantum wells (QWs) with applied magnetic field are investigated theoretically. Using the envelope function approximation, the exciton Hamiltonian is constructed. A general theorem for the diamagnetic shift (DMS) of the lowest exciton energy is derived. In a first part, disorder is taken into account. The numerical results show that the DMS is a measure of wave function localization. Individual exciton states as relevant for optical near-field experiments show a broad distribution of DMS values while its average value increases with energy (decreasing localization). Far-field absorption and photoluminescence spectra become wider with increasing magnetic field. Using structural information on the local chemical composition of a given sample, the statistical properties of the disorder in a real QW have been analyzed. This allowed to generate new disorder potentials as input for the simulation of DMS statistics and photoluminescence spectra. Their comparison with experimental data at different temperatures shows very good agreement. The second part of the thesis deals with quantum dots and rings embedded in the QW, focusing on the exciton Aharonov-Bohm effect. Persistent current and magnetization are evaluated. For circular symmetry, a close relation between the oscillatory component of the exciton energy and the persistent current is revealed. For non-circular rings, oscillations can be observed too but with lower amplitude. A study of the exciton kinetics points to the important role of non-radiative processes, and sets limits for the experimental observability of energy oscillations and photoluminescence quenching.
|
2 |
Herstellung und Charakterisierung duenner Schichten aus BornitridHahn, Jens 30 October 1997 (has links) (PDF)
Mit den ionengestuetzten Schichtabscheideverfahren HF-Magnetronzerstaeubung mit
h-BN-Target und Bortarget und mit der DC-Magnetronzerstaeubung mit Bortarget wurden in
Argon/Stickstoffatmosphaere Bornitrid-Schichten abgeschieden. Die DC-
Magnetronzerstaeubung mit einem Bortarget stellt dabei eine relevante Eigenentwicklung dar.
Es wird gezeigt, daß die verwendeten Magnetronzerstaeubungsverfahren unter definierten
Bedingungen die Abscheidung von c-BN-Schichten mit guter Homogenitaet bezueglich
Schichtdicke und Phasenreinheit auf der standardmaeßig beschichteten Substratflaeche
erlauben. Der fuer die c-BN-Nukleation notwendige Ionenbeschuß kann mit Hilfe
plasmadiagnostischer Methoden quantifiziert werden. Es wurden fuer die drei
Zerstaeubungsverfahren unterschiedliche Parameter Ionenenergie und Ionenstrom fuer eine
c-BN-Nukleation gefunden. Ein relativ niedriger Ionenstrom kann durch eine hohe
Ionenenergie kompensiert werden und umgekehrt. Die Mikrostruktur und
Wachstumsmechanismen werden in Abhaengigkeit von den Beschichtungsbedingungen
beschrieben und auf einen Wert des physikalisch relevanten Parameters Totalimpulseintrag
pro Boratom zurueckgefuehrt. Ein Schwerpunkt ist die getrennte Untersuchung von
Keimbildung und Wachstum. Nach der c-BN-Nukleation können Ionenenergie und
Ionenmasse deutlich reduziert werden bei Aufrechterhaltung des c-BN-Wachstums. Die
mögliche Reduzierung des Ionenbeschusses waehrend des Wachstums wird hinsichtlich des
Totalimpulseintrages in die Schicht quantifiziert und die Auswirkungen auf das
Schichtwachstum beschrieben. Die haftfesten, homogenen und phasenreinen h-BN und c-BN-
Schichten wurden einer umfassenden Charakterisierung unterzogen. Es werden optische und
mechanische Eigenschaften vorgestellt.
|
3 |
Impurity-induced resonant Raman scattering in GaAs below the band gap at low temperatureHuang, Qing 21 June 2000 (has links)
No description available.
|
4 |
Parametrization of relative humidity- and wavelength-dependent optical properties of mixed Saharan dust and marine aerosolSchladitz, Alexander 01 July 2011 (has links) (PDF)
Aerosol particles interact with sunlight through scattering and absorption and have therefore a direct radiative effect. Hygroscopic aerosol particles take up water and are able to grow in size below 100% relative humidity, which involves the change of optical properties
and the direct radiative effect. The change of aerosol optical properties for aerosol mixtures under humidification is presently not well understood, especially for the largest particle sources worldwide.
The present PhD-thesis quantifies wavelength- and humidity-dependent aerosol optical properties for a mixture of Saharan mineral dust and marine aerosol. For quantification, an aerosol model was developed, which based on in-situ measurements of microphysical and optical properties at Cape Verde. With this model, aerosol optical properties were calculated from the dry state up to 90% relative humidity. To validate the model, a measure of the total extenuated light from particles under ambient conditions was used. Finally, the humidity dependence of aerosol optical properties for marine aerosol, Saharan dust aerosol, and a mixture of both species was described by two empirical equations. With the wavelength of the incident visible solar radiation, relative humidity, and dry dust volume fraction, the humidity dependence of optical properties can be calculated from tabulated values. To calculate radiative effects, aerosol optical properties were used as input parameters for global circulation models including radiative transfer. Due to the complexity of aerosol related processes, they have been treated implicitly, meaning in parameterized form. For modelling purposes, the present PhD-thesis provides a solution to include humidity effects of aerosol optical properties. / Aerosolpartikel wechselwirken durch Streu- und Absorptionsprozesse mit der einfallenden Sonnenstrahlung und haben somit einen direkten Strahlungseffekt. Bei relativen Feuchten bis 100% können Aerosolpartikel aufquellen und somit ihre Größe ändern. Im Zuge des
Aufquellens, ändern sich die optischen Eigenschaften und somit auch der direkte Strahlungseffekt der Aerosolpartikel. Speziell für Mischungen von verschiedenen Aerosolspezies ist die Änderung der optischen Eigenschaften des Aerosols durch Feuchte Einfuss noch nicht ausreichend verstanden.
Gegenstand der vorliegenden Arbeit ist daher die Quantifizierung der wellenlängen- und feuchteabhängigen optischen Eigenschaften einer Mischung von Saharastaub- und marinen Aerosol. Die zur Quantifizierung notwendigen Daten wurden im Rahmen einer Feldmessung von mikrophysikalischen- und optischen Aerosol-Eigenschaften auf den Kapverdischen Inseln gesammelt. Auf Grundlage dieser Messungen wurde ein Aerosol-Modell entwickelt. Dieses Modell wurde daraufhin verwendet, um Berechnungen von optischen Aerosol-Eigenschaften bei relativen Feuchten bis 90% durchzuführen. Eine Messung der Lichtschwächung durch Aerosolpartikel unter Umgebungsbedingungen wurde verwandt, um das Modell bei Umgebungsfeuchten zu validieren. Die Wellenlängen- und Feuchteabhängigkeit der optischen Eigenschaften des Aerosols wurde parametrisiert und konnte anhand von zwei Parametergleichungen bestimmt werden.
Unter Benutzung von tabellierten Werten und der Wellenlänge des einfallenden sichtbaren Sonnenlichtes, der relativen Feuchte, sowie der Staubvolumenfraktion, kann die Feuchteabhängigkeit von wichtigen Aerosol-optischen Eigenschaften für Saharastaub, marinen Aerosol
und einer Mischung aus beiden Komponenten bestimmt werden. Globale Zirkulationsmodelle, die auch eine Berechnung von
Strahlungseffekten durch Aerosolpartikel beinhalten, nutzen Aerosol-optische Eigenschaften als Eingabeparameter. Durch zunehmende Komplexitiät zur Beschreibung von Wechselwirkungen in der Atmosphäre, sind einfache Parametrisierungen unabdingbar. Die vorliegende Arbeit liefert daher einen wichtigen Beitrag für die Modellierung von Strahlungseffekten durch Aerosolpartikel und somit zum Verständnis des Strahlungshaushaltes der Erde.
|
5 |
Influence of the growth conditions on the optical properties of SrTiO3Kok, Dirk Johannes 24 February 2017 (has links)
Strontiumtitanat (SrTiO3) ist ein wichtiges Substratmaterial für die Epitaxie und essenziel für fast alle bekannten oxidbasierten zweidimensionalen Elektronengassysteme. Diese Systeme haben viele mögliche Anwendungen, sind aber anfällig für Versetzungen im Substrat, weswegen das volle Potential mit den kommerziell verfügbaren Kristallen nicht erreicht werden kann. Um die Qualität zu erhöhen, müssen bessere Züchtungsmethoden gefunden werden wozu Verständnis der temperaturabhängigen Materialeigenschaften unerlässlich ist. Für viele Oxide können sehr gute Kristalle mit der Czochralski Methode hergestellt werden. Diese Methode erfordert einen guten Wärmetransport durch den wachsenden Kristall. Ein sehr niedriger Wärmetransport führt zu instabilem Wachstum und manchmal zu Spiralbildung. Weil SrTiO3 einen hohen Schmelzpunkt von ca. 2350 K hat, dominiert der Strahlungswärmetransport. IR-Spektren bei hoher Temperatur zeigen eine starke Absorption an freien Ladungsträgern. UV/VIS-Spektren zeigen, dass die Bandlücke stark temperaturabhängig ist, was zu einer hohen Dichte an freien Ladungsträgern führt. Da die IR-Absorption stark mit der Temperatur zunimmt, bietet Kristallzüchtung bei niedrigeren Temperaturen mehr Kontrolle. Dies kann mit der „top-seeded solution growth“-Methode (TSSG) erreicht werden. Viele der gezüchteten Kristalle zeigen starke Verfärbungen. Die Abhängigkeit der optischen Eigenschaften von der Züchtungsatmosphäre wurde systematisch untersucht. Eine Atmosphäre mit sehr geringer Sauerstoffkonzentration führt zu einer schwarz-blauen Verfärbung und leitfähigen Kristallen, während zu viel Sauerstoff zu einer Braunen Farbe führt. Mit dem richtigen Sauerstoffgehalt ist es möglich farblose Kristalle zu züchten. Die braune Verfärbung in nahezu stoichiometrischen TSSG-Kristallen konnte auf Nanometer große Hohlräume in den Kristallen zurückgeführt werden die das Licht streuen. Diese Nanohohlräume entstehen wahrscheinlich durch die Kombination von Punktdefekten. / Strontium titanate (SrTiO3) is an important epitaxy substrate material which is an essential component in almost all oxide based two-dimensional free electron gas systems. These systems offer many potential applications, but are very sensitive to dislocations in the substrate and their full potential cannot be reached with the commercially available material. To improve crystal quality, alternative growth methods are necessary and to find these, knowledge about the temperature dependent material properties is crucial. For many oxides, high-quality crystals can be produced by using the Czochralski method. For this method, a sufficiently high heat transport through the growing crystal is highly important. Very low heat transport will lead to unstable growth, often resulting in spiraling. Because SrTiO3 has a very high melting point of about 2350 K, radiative heat transport dominates. High temperature IR-spectra show that free charge carriers cause the low radiative heat transport. Temperature dependent UV/VIS spectra show that the band gap shifts strongly with temperature, causing the high free carrier concentration. Since the IR absorption depends heavily on the temperature, growth at lower temperatures is easier to control. This is possible using top seeded solution growth (TSSG). Many of the crystals produced by the growth methods investigated here show strong colorations. The dependence of the color on the growth atmosphere was investigated. Atmospheres with a low oxygen concentration led to blue/black conducting crystals and a high oxygen concentration led to brownish crystals. With the correct oxygen concentration, colorless crystals can be grown. The brown coloration in nearly stoichiometric TSSG crystals was found to be due to light scattering at nanometer sized voids in the crystals. These nano-voids are probably formed by the combination of vacancies.
|
6 |
Functionality of noble-metal clustersBürgel, Christian 04 March 2009 (has links)
In dieser Dissertation wurden die ungewöhnlichen und einzigartigen Eigenschaften von Edelmetall-Clustern untersucht, die durch Quantum-Confinement im Sub-Nanometer-Bereich entstehen. Dabei zeigt sich, dass die chemischen und physikalischen Eigenschaften und damit die Funktionen nicht vom Festkörper abgeleitet werden können und stark von der Anzahl der Atome abhängen. Die erzielten theoretischen Ergebnisse wurden in enger Zusammenarbeit mit experimentell arbeitenden Partnergruppen erzielt. Dabei hat sich gezeigt, dass durch die enge Kooperation zwischen Theorie und Experiment ein tiefes Verständnis von fundamentalen Prozessen und den zugrunde liegenden Mechanismen erlangt werden kann. Im Rahmen dieser Dissertation wurden die Reaktivität von geladenen Goldoxid-Clustern in der Gasphase, die ultraschnelle Dynamik von Edelmetall-Clustern und deren Komplexen sowie die optischen Eigenschaften von kleinen, deponierten Silber-Clustern untersucht und damit Beiträge geliefert, die einzigartigen Eigenschaften von Edelmetall-Clustern im Zusammenhang mit der heterogenen Katalyse und Nano-Optik besser zu verstehen. / In this thesis, the unique novel properties of noble metal clusters which arise in the sub-nanometer size regime due to quantum confinement have been theoretically explored. It has been demonstrated that by adding or removing a single atom the chemical and physical properties and functionality of noble-metal clusters can strongly change. The theoretical results have been derived in close cooperation with experimental findings of partner groups demonstrating that by joint theoretical and experimental efforts thorough understanding of fundamental processes and underlying mechanisms can be achieved. This thesis addresses the reactivity of charged gas-phase gold-oxide clusters in the context of the heterogeneous gold nano-catalysis, the ultrafast dynamical properties of noble-metal clusters and their complexes, and the optical properties of silver clusters at surfaces.
|
7 |
Syntheses and Assemblies of Noble Metal NanostructuresZiegler, Christoph 10 July 2013 (has links) (PDF)
Shape and size control as well as the control of the assembly of nanostructures are current challenges in nano sciences. Focussing on metal nanostructures all of these aspects have been addressed in the frame of the present work. It was possible to develop a new aqueous seeded growth method that produces gold nanoparticles with adjustable diameters over a large range of sizes. The spherical particles obtained show very low polydispersities and a good long term stability. Furthermore it was possible to reveal the growth mechanism of these particles utilizing electron microscopy and optical investigations coupled with theoretical calculations. It was found that there is a formation of small nucleation sites on the surface of the seeds in the beginning of the growth process. These sites then subsequently grow into "blackberry-like" intermediate particles. A final intraparticle ripening step leads to smooth and uniform spherical gold nanoparticles. By correcting the dielectric function of gold for charging and the free mean path effect and taking into account the particle size distribution it was possible to accurately model the optical properties of the gold sols obtained using Mie theory.
By controlling the concentration of chloride ions it was possible to influence both the ripening of the "blackberry-like" shaped particles and the morphology of gold nanoparticles. An increased concentration of the chloride ions in the standard citrate reduction procedure leads to larger and elongated particles, whereas the complete removal of the chloride ions made it possible to obtain star shaped, decahedral and \"desert-rose\" shaped particle morphologies. Using the layer-by-layer technique gold nanoparticles of different sizes could be immobilized on glass substrates. The surface-enhanced Raman scattering intensity of these mixed films were about 60% higher than compared to a film made of a single particle size. The optical properties were further investigated by comparing experimentally obtained UV/Vis spectra with generalized Mie theory simulations.
Additionally it could be shown that tetrazole and its derivatives are suitable stabilizing agents in the aqueous synthesis of silver nanoparticles. It was found that depending on the tetrazole derivative used the tendencies of the nanoparticles to agglomerate vary significantly. Different agglomeration stages have been investigated by UV/Vis and Raman spectroscopy. The removal of the ligands used and a resulting improvement of the applicability of the silver nanostructures as SERS substrates is still a challenge.
In the last part of this work the focus was changed from the optical properties of noble metal nanoparticles to their catalytic properties. Therefore gold and palladium nanoparticles have been successfully immobilized on highly porous zinc oxide aerogels. It was possible to synthesize sponge-, flake-, and ribbon-like zinc oxide gels with high specific surface areas. The facile approach of generating mixed metal oxide/noble metal aerogels is very promising for the preparation of highly selective and highly active heterogenous catalysts. First catalytic investigations of a sponge-like palladium loaded zinc oxide aerogel toward the semi-hydrogenation of acetylene showed very high selectivities of up to 85%.
|
8 |
Syntheses and Assemblies of Noble Metal NanostructuresZiegler, Christoph 15 December 2012 (has links)
Shape and size control as well as the control of the assembly of nanostructures are current challenges in nano sciences. Focussing on metal nanostructures all of these aspects have been addressed in the frame of the present work. It was possible to develop a new aqueous seeded growth method that produces gold nanoparticles with adjustable diameters over a large range of sizes. The spherical particles obtained show very low polydispersities and a good long term stability. Furthermore it was possible to reveal the growth mechanism of these particles utilizing electron microscopy and optical investigations coupled with theoretical calculations. It was found that there is a formation of small nucleation sites on the surface of the seeds in the beginning of the growth process. These sites then subsequently grow into "blackberry-like" intermediate particles. A final intraparticle ripening step leads to smooth and uniform spherical gold nanoparticles. By correcting the dielectric function of gold for charging and the free mean path effect and taking into account the particle size distribution it was possible to accurately model the optical properties of the gold sols obtained using Mie theory.
By controlling the concentration of chloride ions it was possible to influence both the ripening of the "blackberry-like" shaped particles and the morphology of gold nanoparticles. An increased concentration of the chloride ions in the standard citrate reduction procedure leads to larger and elongated particles, whereas the complete removal of the chloride ions made it possible to obtain star shaped, decahedral and \"desert-rose\" shaped particle morphologies. Using the layer-by-layer technique gold nanoparticles of different sizes could be immobilized on glass substrates. The surface-enhanced Raman scattering intensity of these mixed films were about 60% higher than compared to a film made of a single particle size. The optical properties were further investigated by comparing experimentally obtained UV/Vis spectra with generalized Mie theory simulations.
Additionally it could be shown that tetrazole and its derivatives are suitable stabilizing agents in the aqueous synthesis of silver nanoparticles. It was found that depending on the tetrazole derivative used the tendencies of the nanoparticles to agglomerate vary significantly. Different agglomeration stages have been investigated by UV/Vis and Raman spectroscopy. The removal of the ligands used and a resulting improvement of the applicability of the silver nanostructures as SERS substrates is still a challenge.
In the last part of this work the focus was changed from the optical properties of noble metal nanoparticles to their catalytic properties. Therefore gold and palladium nanoparticles have been successfully immobilized on highly porous zinc oxide aerogels. It was possible to synthesize sponge-, flake-, and ribbon-like zinc oxide gels with high specific surface areas. The facile approach of generating mixed metal oxide/noble metal aerogels is very promising for the preparation of highly selective and highly active heterogenous catalysts. First catalytic investigations of a sponge-like palladium loaded zinc oxide aerogel toward the semi-hydrogenation of acetylene showed very high selectivities of up to 85%.
|
9 |
Parametrization of relative humidity- and wavelength-dependent optical properties of mixed Saharan dust and marine aerosolSchladitz, Alexander 01 July 2011 (has links)
Aerosol particles interact with sunlight through scattering and absorption and have therefore a direct radiative effect. Hygroscopic aerosol particles take up water and are able to grow in size below 100% relative humidity, which involves the change of optical properties
and the direct radiative effect. The change of aerosol optical properties for aerosol mixtures under humidification is presently not well understood, especially for the largest particle sources worldwide.
The present PhD-thesis quantifies wavelength- and humidity-dependent aerosol optical properties for a mixture of Saharan mineral dust and marine aerosol. For quantification, an aerosol model was developed, which based on in-situ measurements of microphysical and optical properties at Cape Verde. With this model, aerosol optical properties were calculated from the dry state up to 90% relative humidity. To validate the model, a measure of the total extenuated light from particles under ambient conditions was used. Finally, the humidity dependence of aerosol optical properties for marine aerosol, Saharan dust aerosol, and a mixture of both species was described by two empirical equations. With the wavelength of the incident visible solar radiation, relative humidity, and dry dust volume fraction, the humidity dependence of optical properties can be calculated from tabulated values. To calculate radiative effects, aerosol optical properties were used as input parameters for global circulation models including radiative transfer. Due to the complexity of aerosol related processes, they have been treated implicitly, meaning in parameterized form. For modelling purposes, the present PhD-thesis provides a solution to include humidity effects of aerosol optical properties. / Aerosolpartikel wechselwirken durch Streu- und Absorptionsprozesse mit der einfallenden Sonnenstrahlung und haben somit einen direkten Strahlungseffekt. Bei relativen Feuchten bis 100% können Aerosolpartikel aufquellen und somit ihre Größe ändern. Im Zuge des
Aufquellens, ändern sich die optischen Eigenschaften und somit auch der direkte Strahlungseffekt der Aerosolpartikel. Speziell für Mischungen von verschiedenen Aerosolspezies ist die Änderung der optischen Eigenschaften des Aerosols durch Feuchte Einfuss noch nicht ausreichend verstanden.
Gegenstand der vorliegenden Arbeit ist daher die Quantifizierung der wellenlängen- und feuchteabhängigen optischen Eigenschaften einer Mischung von Saharastaub- und marinen Aerosol. Die zur Quantifizierung notwendigen Daten wurden im Rahmen einer Feldmessung von mikrophysikalischen- und optischen Aerosol-Eigenschaften auf den Kapverdischen Inseln gesammelt. Auf Grundlage dieser Messungen wurde ein Aerosol-Modell entwickelt. Dieses Modell wurde daraufhin verwendet, um Berechnungen von optischen Aerosol-Eigenschaften bei relativen Feuchten bis 90% durchzuführen. Eine Messung der Lichtschwächung durch Aerosolpartikel unter Umgebungsbedingungen wurde verwandt, um das Modell bei Umgebungsfeuchten zu validieren. Die Wellenlängen- und Feuchteabhängigkeit der optischen Eigenschaften des Aerosols wurde parametrisiert und konnte anhand von zwei Parametergleichungen bestimmt werden.
Unter Benutzung von tabellierten Werten und der Wellenlänge des einfallenden sichtbaren Sonnenlichtes, der relativen Feuchte, sowie der Staubvolumenfraktion, kann die Feuchteabhängigkeit von wichtigen Aerosol-optischen Eigenschaften für Saharastaub, marinen Aerosol
und einer Mischung aus beiden Komponenten bestimmt werden. Globale Zirkulationsmodelle, die auch eine Berechnung von
Strahlungseffekten durch Aerosolpartikel beinhalten, nutzen Aerosol-optische Eigenschaften als Eingabeparameter. Durch zunehmende Komplexitiät zur Beschreibung von Wechselwirkungen in der Atmosphäre, sind einfache Parametrisierungen unabdingbar. Die vorliegende Arbeit liefert daher einen wichtigen Beitrag für die Modellierung von Strahlungseffekten durch Aerosolpartikel und somit zum Verständnis des Strahlungshaushaltes der Erde.
|
10 |
Theoretical Investigations of the Photophysical Properties of Chromophoric Metal-Organic FrameworksBatra, Kamal 02 March 2021 (has links)
For inorganic semiconductors such as silicon, crystalline order leads to bands in the electronic structure which give rise to drastic differences with respect to disordered materials. Distinct band features lead to photo-effect, and the band structure can be tuned to optimize the performance of the photovoltaic (PV) device. An example is the presence of an indirect band gap. For organic semiconductors, such effects are typically precluded, since most organic materials employed are disordered, which hampers their characterization and theoretical analysis.
The inspiration for this thesis came from the very first evidence of an indirect band gap exhibited by highly ordered and crystalline porphyrin-based surface-mounted metal-organic framework (PP-based SURMOF) material [J. Liu et al. Angew. Chem. Int. Ed. 2015, 54, 7441]. The presence of an indirect band gap should in principle result in suppressed charge recombination and efficient charge separations which would significantly enhance the PV device performance. However, the energy gain from the electronic band dispersion in the reported Pd-PP-Zn-SURMOF is far too low (≈5 meV) and results in a very low photocurrent generation (efficiency 0.2%), which is certainly not sufficient for the application. Another noticeable shortcoming is the weakly absorbing Q-bands of the employed PP chromophore (Pd-metal containing porphyrinoid, Pd-PP) in the visible region of the solar spectrum. Nevertheless, this novel research has highlighted the potential to improve the photophysical properties of PP-based SURMOFs by (i) introducing various functional groups or metal ions to the PP-core and (ii) controlling the PP-stacking behavior in layered materials.
To overcome the posed shortcomings of the PP-MOF prototype PV material and to exploit the potential of PP-based SURMOFs, we have employed the following approach to increase the light absorption and the electronic band dispersion. Firstly, we proposed a computationally feasible simplified time-dependent approach to investigate the light absorption properties of PP derivatives or related PP-containing materials. Secondly, we predicted the light absorption properties of multi-functionalized PPs (i.e. tuning the weakly absorbing Q-bands), thus allowing us to identify different PP linkers with different light absorption properties, allowing to bridge the so-called green gap. Finally, we incorporated the most promising PP linkers for the construction of SURMOFs and applied state-of-the-art DFT methods in various approximations to optimize the PP-stacking behavior to achieve the desired photophysical properties. Besides PPs, we have extended our investigations to phthalocyanines (PCs) as alternative individual SURMOF building blocks, because they do not only exhibit structural robustness and stability but also possess enhanced absorption in the visible and the near IR spectral regions in comparison to PPs. Hence, the exploitation of PCs could enrich the library of SURMOFs with the desired optical quality.
|
Page generated in 0.1112 seconds