• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 508
  • 157
  • 114
  • 86
  • 25
  • 20
  • 15
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 1186
  • 201
  • 168
  • 110
  • 101
  • 98
  • 94
  • 94
  • 93
  • 91
  • 89
  • 88
  • 87
  • 83
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Síntese e caracterização de um sistema multifuncional SBA-16/Nanopartículas magnéticas/gel polimérico para bioaplicações

Raquel Cristina de Souza Azevedo 13 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A combinação do material mesoporoso SBA-16 com o gel polimérico poli(N-isopropilacrilamida) contendo nanopartículas magnéticas pode conduzir à formação de um material híbrido interessante para aplicação em magnetohipertemia e liberação controlada de fármacos. Neste trabalho, foi explorada a estratégia de síntese de um sistema multifuncional, constituído por SBA-16/Fe3O4/P(N-iPAAm) com o objetivo de avaliar sua potencialidade de geração de calor a partir da magnetita e sua contribuição nos estudos de liberação controlada de fármacos. A caracterização dos materiais foi feita por Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET), Adsorção de Nitrogênio, Espalhamento de Raios X a Baixos Ângulos (SAXS), Análise Termogravimétrica (TG), Análise Elementar (CHN), Espectroscopia na Região do Infravermelho com Transformada de Fourier (FTIR), Difração de Raios X (DRX), Espectroscopia Mössbauer, Medidas Magnéticas e Espectroscopia de Fotoelétrons Excitados por Raios X (XPS). Através da análise dos resultados obtidos foi possível confirmar a formação do híbrido, e elucidar as propriedades físico-químicas, estruturais e magnéticas das amostras. Medidas das propriedades de geração de calor mostraram que o híbrido apresentou uma variação de temperatura (T) de 11 e 35C nas concentrações de 10 e de 20 mg/mL, respectivamente, no campo magnético alternado de 126 Oe; e apresentou uma variação de temperatura (T) de 32 e 39C nas concentrações de 10 e de 20 mg/mL, respectivamente, no campo magnético alternado de 168 Oe. Este resultado demonstrou que este sistema multifuncional apresenta potencial como agente de hipertermia para o tratamento do câncer. Por fim, foi feito o estudo da influência dessas nanopartículas magnéticas com a presença do gel na cinética de liberação do fármaco Doxorrubicina (DOX) sob condições in vitro. A liberação foi estudada na ausência e na presença de um campo magnético alternado de 126 Oe, que se constatou a influência do campo magnético no aumento da taxa de liberação da DOX. Este resultado demonstrou que a propriedade da magnetita de gerar calor aliada às propriedades do P(N-iPAAm) de transição de fases (contração) contribuiu para uma melhor taxa de liberação da DOX. / The combination of SBA-16 mesoporous materials with gel polymer poly (N-isopropylacrylamide) containing magnetic nanoparticles can lead to the formation of an interesting hybrid material for use in hybrid magnetic hyperthermia and controlled drug release. In this study, we explored the strategy of synthesis of a multifunctional system consisting of SBA-16/Fe3O4/P(N-iPAAm) in order to assess its potential for heat generation from magnetite and its contribution in the controlled drug release. The materials were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Nitrogen Adsorption, Small Angle X Ray Scattering (SAXS), Thermogravimetric Analysis (TG), Elemental Analysis (CHN), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), 57Fe Mössbauer spectroscopy, magnetic measures and X-Ray Photoeletron Spectroscopy (XPS). Through the analysis of the results it was possible to confirm the formation of the hybrid system, and elucidate the physicochemical, structural and magnetic properties of the samples. Measurements of the properties of heat generation showed that the hybrid presents a temperature variation (T) of 11 and 35C in concentrations of 10 and 20 mg/mL, respectively, in the alternating magnetic field of 126 Oe, and presents a temperature variation (T) 32 and 39C at concentrations of 10 and 20 mg/mL, respectively, in alternating magnetic field of 168 Oe. This result indicates that the multifunctional system shows great potential as a hyperthermia agent for cancer treatment. Finally, the study of the influence of these magnetic particles in the kinetics of release of the doxorubicin (DOX) was made in the presence of gel under in vitro conditions. The release was studied in the absence and in the presence of an alternating magnetic field of 126 Oe; it was found that the presence of magnetic field increased the release rate of DOX. This result demonstrated that the property of heat generate from magnetite combined with phase transition (contraction) properties of P(N-iPAAm) contributed to a better control of release of DOX from hybrid system.
532

Funcionalização de nanotubos de nitreto de boro para ensaios de biocompatibilidade e avaliação do potencial para bioaplicações. / Functionalization of boron nitride nanotubes for testing biocompatibility assays and evaluation of potential for bioapplications

Tiago Hilário Ferreira 21 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os nanotubos de nitreto de boro (BNNTs) apresentam características atraentes para uma grande variedade de aplicações tecnológicas. Essas nanoestruturas são adequadas para o desenvolvimento de novos nanovetores para terapia celular, liberação controlada de princípios ativos, e outras aplicações biomédicas e clínicas. Neste trabalho, os BNNTs foram sintetizados a partir de um método similar ao de deposição química por vapor, e em seguida foram funcionalizados através de processos distintos, utilizando diversas moléculas biocompatíveis: polietileno glicol, quitosana, glicol quitosana, glicosamina, goma arábica e ácido fólico. A modificação das paredes do nanotubo foi feita através de recobrimento não covalente e também por meio de reações químicas de forma covalente. Cada sistema formado foi devidamente caracterizado com o objetivo de confirmar a natureza química do nitreto de boro e dos agentes funcionalizantes, e também a sua organização estrutural. As técnicas de caracterização utilizadas foram espectroscopia no infravermelho (FTIR), difração de raios-X (XRD), análise térmica (TGA), adsorção de N2, espectroscopia Raman, microscopia eletrônica de varredura (SEM), microscopia eletrônica de transmissão (TEM), espectroscopia de espalhamento dinâmico de luz (DLS), potencial zeta, espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de fluorescência. Foram realizados ensaios de citocompatibilidade, por diferentes métodos, que revelaram que os BNNTs não apresentam citotoxicidade aparente em nenhuma das amostras até a concentração de 50 μg/mL. Através dos ensaios para transformação bacteriana foi constatado que os BNNTs atuam como facilitadores nas transformações realizadas com choque térmico. Foi demonstrado também que essas nanoestruturas exercem uma influência significativa na transfecção celular e na diferenciação de células tronco mesenquimais, aumentando a eficiência desses processos. Outros ensaios demonstraram que esses nanotubos são captados por células da linhagem HeLa e podem ser nanovetores úteis para a entrega de moléculas de interesse em locais específicos, e também para terapia de captura de nêutrons pelo boro. A auto-fluorescência apresentada pelos BNNTs permite a visualização dos mesmos no microscópio de fluorescência. O estudo in vivo com a nanoestrutura complexada com 99mTc determinou o perfil de biodistribuição, e mostrou que após atingir a circulação sistêmica o BNNT foi capturado principalmente no fígado, baço e tecidos intestinais, além de apresentar uma acumulação significativa na bexiga. / Boron nitride nanotubes (BNNTs) have attractive features for a wide variety of technical applications. These nanostructures are suitable for the development of new nanovetores for cell therapy, controlled release of active therapy, and others biomedical and clinical applications. In this work the BNNTs were synthesized from a method similar to chemical vapor deposition, and then were functionalized through different processes, using various biocompatible molecules: polyethylene glycol, chitosan, glycol chitosan, glucosamine, gum arabic and folic acid. The modification of the nanotube walls was performed by non-covalent coating and also through chemical reactions covalently. Each system formed was properly characterized in order to confirm the chemical nature of boron nitride and functionalizing agents, and also its structural organization. The characterization techniques used were infrared spectroscopy (FTIR), X- ray diffraction (XRD), thermal analysis (TGA), N2 adsorption, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, X-ray photoelectron spectroscopy (XPS) and fluorescence spectroscopy. Cytocompatibility tests were carried out by different methods, which revealed that the BNNTs have no apparent cytotoxicity in any sample until the concentration of 50 mg/mL. Through the tests for bacterial transformation was found that BNNTs act as facilitators in the transformations performed with heat shock. It was also shown that these nanostructures have an extremely significant influence on the processes of cell transfection and differentiation of mesenchymal stem cells, increasing its efficiency. Other tests have shown that these nanotubes are captured by the HeLa cells and may be useful nanovectors for the delivery of molecules of interest in specific locations and also to boron.neutron capture therapy. The significant auto-fluorescence presented by BNNTs allowed its visualization through confocal microscopy The in vivo study with the nanostructure complexed with 99mTc determined the biodistribution profile, and showed that after reaching the systemic circulation BNNT was captured mainly in the liver, spleen and intestinal tissues, as well as presenting a significant accumulation in the bladder.
533

Nanoparticulas de sílica mesoporosa MCM-41 funcionalizadas com aptâmero e radiomarcadas com 90Y e 159Gd como um potencial agente terapêutico contra câncer colorretal

Carolina de Aguiar Ferreira 14 March 2014 (has links)
O câncer colorretal (CRC) é um tumor maligno que afeta o intestino grosso e o reto, o tipo de câncer mais comum do trato gastrointestinal, o terceiro mais comumente diagnosticado no mundo e a segunda principal causa de morte relacionada ao câncer nos Estados Unidos. Hoje em dia, os procedimentos terapêuticos disponíveis para este tipo de câncer são limitados e ineficazes. A radioterapia convencional não é uma abordagem comumente utilizada no tratamento de CRC, devido ao fato de que os movimentos peristálticos dificultam o direcionamento da radiação ionizante e, assim, este tipo de tratamento é utilizado como adjuvante e paliativo para controlar sintomas. Portanto, a intervenção cirúrgica é a opção terapêutica primária contra esta doença. As pesquisas com base na combinação de radioisótopos e sistemas carreadores nanoestruturados têm demonstrado resultados significativos na melhoria da seletividade de ação, bem como na redução da dose de radiação nos tecidos saudáveis. As nanopartículas de sílica mesoporosa MCM-41 têm características únicas, tais como elevada área superficial e diâmetros de poros bem definidos, fazendo destas nanopartículas um candidato ideal como carreador de agentes terapêuticos. A funcionalização desses carreadores com moléculas específicas tem sido utilizada como uma forma de direcionar essas partículas para as regiões desejadas, aumentando o acúmulo dessas partículas nos tecidos-alvo e diminuindo o efeito adverso em tecidos sadios. Uma molécula específica de destaque é o aptâmero anti-CEA, que é uma porção de cadeia de DNA que tem a capacidade de se ligar e reconhecer receptores de antígeno carcinoembriogênico superexpressos em células de tumor colorretal. Assim, o objetivo deste trabalho consistiu em sintetizar e caracterizar nanopartículas de sílica mesoporosa MCM-41, funcionalizadas com aptâmero anti-CEA e conjugados com ítrio-90 ou gadolínio-159 e avaliar esses sistemas como potenciais agentes terapêuticos. As nanopartículas foram sintetizadas através do método de sol-gel. As amostras foram caracterizadas através das técnicas de espectroscopia na região do infravermelho com transformada de Fourier (FTIR), espalhamento de raios X a baixos ângulos (SAXS), espectroscopia de correlação de fótons (PCS), análise de potencial zeta, análise termogravimétrica (TGA), análise elementar (CHN), adsorção de nitrogênio (BET) e microscopia eletrônica de transmissão (TEM) e de varredura (SEM). A capacidade de incorporar íons Y+3 e Gd+3 foi determinada in vitro, utilizando diferentes proporções (1:1 e 1:3 v/v) de YCL3 e Gd203 e nanopartículas de sílica dispersas em água MilliQ. Os íons não incorporados foram removidos por ultracentrifugação e a concentração de íons no sobrenadante foi determinada por espectrometria de emissão atômica com plasma indutivamente acoplado (ICP-AES). A viabilidade celular foi avaliada por um ensaio MTT colorimétrico no qual foram usadas células específicas de câncer colorretal T84. Os resultados mostraram que as nanopartículas foram sintetizadas com sucesso, obtendo nanopartículas com morfologia esférica, tamanho de partícula de 400 nm, PDI (índice de Polidispersividade) 0,1, potencial zeta de -25,8 meV , arranjo hexagonal de poros com diâmetros de 3 nm e área superficial de 1.400 m2.g-1. Os resultados do ensaio de viabilidade celular sugerem o uso de nanopartículas incorporadas com radioisótopos como potenciais agentes terapêuticos. / Colorectal cancer (CRC) is a malignancy that affects large intestine and rectum, and it is the most common malignancy of the gastrointestinal tract, the third most commonly diagnosed type of cancer in the world and the second leading cause of cancer-related death in the United States. Nowadays, available therapeutic procedures for this type of cancer are limited and ineffective. Conventional radiotherapy is not an often used approach in the treatment of CRC due to the fact that peristaltic movements hamper the targeting of ionizing radiation and this type of treatment is used as adjuvant and palliative to control symptoms. Therefore, surgical intervention is the primary therapeutic choice against this disease. Researches based on the combination of radioisotopes and nanostructured carriers systems have demonstrated significant results in improving the selectivity action as well as reducing the radiation dose into healthy tissues. MCM-41 mesoporous silica nanoparticles have unique characteristics such as high surface area and well-defined pore diameters making these nanoparticles an ideal candidate of therapeutic agent carrier. Thus, the objective of this work is to synthesize and characterize MCM-41 mesoporous silica nanoparticles conjugated with yttrium-90 and gadolinium-159 and evaluate this system as a potential therapeutic agent. The nanoparticles were synthesized via sol-gel method. The sample was characterized using FTIR, SAXS, PCS, Zeta Potential analysis, Thermal analysis, CHN elemental analysis, nitrogen adsorption, scanning and transmission electron microscopy. The ability to incorporate Y+3 and Gd+3 ion was determined in vitro using different ratios (1:1, 1:3, 1:5 v/v) of YCL3 and Gd2O3 and silica nanoparticles dispersed in saline, pH 7.4. The non-incorporated Y+3 and Gd+3 ions were removed by ultracentrifugation procedure and the concentration of ions in the supernatant was determined by ICP-AES. Cell viability was assessed by colorimetric MTT assay in which specific colorectal cancer cells T84 were used. The results showed that the nanoparticles were successfully synthesized, obtaining nanoparticles with spherical morphology, particle size of 400 nm, PDI 0,1, zeta potential of -25, 8 meV, hexagonal arrangement of pores with 3 nm diameters and superficial area of 1400 m2.g-1. Cell viability assay results suggest the use of incorporated nanoparticles as a potential therapeutic agent.
534

Desenvolvimento de novas plataformas poliméricas para detecção eletroquímica de amônia e uréia / Development of new polymeric platforms for ammonia and urea electrochemical detection

Massafera, Mariana Pereira 04 November 2010 (has links)
Este trabalho apresenta o desenvolvimento de (bio)sensores baseados em plataformas poliméricas convencionais e nanoestruturadas. Os sensores estudados contém poli(pirrol) como transdutor eletroquímico, responsável pela oxidação de amônia a 0,35 V. Como a enzima urease hidrolisa cataliticamente uréia a amônia, após a imobilização da enzima sobre o poli(pirrol), obtém-se um biossensor para detecção indireta de uréia, via amônia. A detecção de amônia pelo poli(pirrol) foi otimizada em termos da densidade de carga de poli(pirrol) presente no sensor, e do potencial de trabalho. Então verificou-se a ação do polímero poli(5-amino-1-naftol) na redução do sinal dos interferentes ácidos úrico e ascórbico. Após a otimização do sensor-base, estudou-se a influência do tipo de imobilização da urease ao substrato polimérico na sensibilidade e estabilidade do biossensor de uréia. Concluiu-se que a pouca quantidade de enzima imobilizada através das metodologias estudadas era o fator limitante da sensibilidade de detecção, e então implementou-se a nanoestruturação do poli(pirrol), para aumentar a área superficial disponível para a imobilização da urease. Preparou-se filmes de poli(pirrol) nanoestruturado (macroporoso e nanofios), e a compreensão dos fenômenos observados só foi possível ao aliar características geométricas e propriedades físico-químicas intrínsecas de sistemas nanoestruturados. / This work presents the development of (bio)sensors based on conventional and nanostructured polymeric platforms. The analyzed sensors contain poly(pyrrole) as electrochemical transducer, responsible for ammonia oxidation at 0.35 V. As the enzyme urease catalytically hydrolyses urea to ammonia, after enzyme immobilization onto poly(pyrrole), a biosensor for urea indirect detection, via ammonia, is obtained. Ammonia sensing by poly(pyrrole) was optimized in terms of both charge density of poly(pyrrole) present in the sensor and working potential. In sequence, poly(5-amino-1-naphtol) role as interferents (uric and ascorbic acids) signal blocker was verified. After optimization of the base-sensor, the influence of urease immobilization method on both detection sensitivity and biosensor durability was investigated. It was found that the small amount of enzyme immobilized using the compared methods limited detection sensitivities, and then nanostructuration of poly(pyrrole) was implemented, in order to increase the surface area available for urease immobilization. Nanostructured poly(pyrrole) films (macroporous and nanowires) were prepared, and the fully understanding of the observed phenomena was only possible combining geometric characteristics and physical-chemical properties related to nanostructured systems.
535

Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas / Theoretical studies of teh dynamical evolution of gold nanowires with and without impurities

Hobi Junior, Edwin 03 April 2009 (has links)
O entendimento e o controle das propriedades de materiais nanoestruturados em função do seu tamanho, forma e composição, por exemplo, é fundamental para o avanço da chamada nanotecnologia. Nanofios metálicos, em particular, são interessantes pois possibilitam a investigação de propriedades de sistemas com baixa dimensionalidade, além de serem considerados candidatos a elemento de interligação de unidades fundamentais de uma eletrônica no nível molecular. Efeitos de temperatura sobre o rompimento de nanofios monoatômicos de ouro puros e com impurezas de hidrogênio ou carbono foram investigados de modo sistemático, através da utilização do método de Dinâmica Molecular ab initio, na temperatura de 300 K. De acordo com a metodologia utilizada e as impurezas estudadas, os resultados mostraram que os sistemas são estáveis para longo tempo de simulação (20 ps) e que o hidrogênio é o candidato mais apropriado para explicar as distâncias Au-Au da ordem de 3.6 ºA que são observadas experimentalmente. Questões associadas à ruptura, tais como o entendimento do mecanismo físico envolvido no processo, o papel das flutuações térmicas e o efeito da presença de impureza, são discutidas com base em um modelo de triplas de átomos e de dados estatísticos obtidos de simulações de dinâmica molecular. A partir do modelo, a ruptura pôde ser entendida através de instabilidades observadas no perfil da superfície de energia potencial para ligações suficientemente estressadas. As flutuações térmicas seriam então as res- ponsáveis por levar o tamanho das triplas para os valores instáveis. Este modelo foi capaz ainda de explicar fatos como a não observação de eventos de ruptura em ligações do tipo Au-X (X=H,C), e a probabilidade maior de um fio com impureza de H ou C romper na ligação Au-Au mais afastada da impureza. O estudo de efeitos de tempe- ratura foi estendido para 106T6500 K. Nanofios com outros tamanhos de cadeia (3, 4 ou 6 átomos), na temperatura de 300 K, também foram estudados. De forma geral, os resultados mostraram que a temperatura possui essencialmente o efeito de aumentar a amplitude das flutuações, não modificando os valores médios das distâncias interatômicas da cadeia. Um estudo estatístico das simulações permitiu ainda entender o comportamento destas flutuações, que escala com a raiz quadrada da temperatura do sistema. Um aspecto importante das simulações envolvendo átomos de hidrogênio refere-se a efeitos quânticos que estariam sendo negligenciados. De acordo com os resultados obtidos da dinâmica, o movimento vibracional transversal do H conferia ao sistema uma instabilidade que supostamente seria fruto de uma abordagem inapropriada, já que graus de liberdade clássicos estariam sendo excitados indevidamente. Foi proposto então uma metodologia onde o movimento vibracional do H é substituído por um movimento \"adiabático\", de modo que ele se acomoda (quase) instantaneamente ao movimento mais lento do resto do sistema, através de seu posicionamento no mínimo do potencial local. Dentro desta perspectiva, esta metodologia seria mais realista que a dinâmica realizada de forma convencional, fornecendo, portanto, valores com maior nível de confiança. A distância Au-H-Au aumentou com a utilização desta aproximação, concordando com medidas experimentais de distâncias Au-Au em cadeias monoatômicas da ordem de 3.6 ºA. / The understanding and control of the properties of nanostructured materials as a function of their length, shape and composition, for example, is fundamental to improve the so called nanotechnology. Gold nanowires, in particular, are interesting since they not only allow the investigation of the properties of low-dimensional systems, but have also been thought of as candidates for nanometric interconnection elements. Temperature effects in the stability of pure, H or C doped atomically thin gold nanowires were systematically investigated with ab initio Molecular Dynamics simulations at temperature of 300 K. The results showed that the systems are stable for long time simulations (20 ps), and within the present hypothesis, the hydrogen is the best candidate to explain the large Au-Au distances of order of 3.6 ºA that are experimentally observed. Questions about the nanowires rupture, such as the understanding of the physical mechanism involved, the role of the thermal fluctuations and the effect of impurities, are discussed in accordance with a model of triplet of atoms and the statistical results obtained from the molecular dynamics simulations. The triplets model allowed the understanding of the rupture through instabilities observed in the potential energy surface profile when the bonds are su±ciently stressed. Thermal fluctuations would be responsible to lead to these unstable distances. Additionally, this model was able to explain facts such as why the rupture never occurred at Au-X bonds (X=H,C), and the higher probability that a nanowire with H or C impurity has to break on the Au-Au bond more distant from impurity. The study of temperature effects was extended to 106T6500 K. Nanowires with other length chains (3, 4 or 6 atoms) at temperature of 300 K were also studied. In general, the results showed that the effect of temperature is basically to increase the amplitude of the fluctuations, however, it does not modify the average interatomic distances of the chain. A statistical study also allowed to understand the behavior of these fluctuations, which scale with the square root of the temperature. An important aspect of the simulations involving hydrogen atoms is associated with quantum effects that are not taken into account. According to the molecular dynamics results, the transversal vibration of the H atom provided an instability to the system, that supposedly would be produced by an inappropriate treatment, since these degrees of freedom would be inappropriately excited. So, a methodology was proposed where the vibrational motion of the H is replaced by an \\adiabatic\" motion, with the hydrogen following (quasi) instantaneously the slower motion of the remainder system, being positioned at the local minimum of the potential. In this picture, this methodology would be more realistic than the conventional dynamics, allowing to obtain more reliable results. The Au-H-Au distance increased in this approximation, being in good agreement with the Au-Au distances measured experimentally in monoatomic chains, of the order of 3.6 ºA.
536

FDTD modelling of nanostructures at microwave frequency

Turati, Paolo January 2014 (has links)
The thesis which is hereby presented describes a study of the numerical modelling of the coupled interaction of nanostructures with electromagnetic fields in the range of microwaves. This is a very ambitious task and requires a thorough and rigorous implementation of new algorithms designed to this purpose. The first issue to be encountered is the characterisation and the physical understanding of the behaviour of a nanostructure. The term itself, nanostructure, defines any device which has a nanometric size in at least one dimension, regardless of its material and geometry, hence it is a very wide definition. Carbon Nanotubes (CNT), quantum dots and quantum wells fall into this category, for example, and in electronics these structures are generally composed of semiconductor materials, like Silicon or Gallium Arsenide. The first step to take, in order to model such objects from an electronics point of view, is to solve the Schrodinger equation. The Schrodinger equation is a very general formula, widely used in quantum physics, which, when provided with a certain electrical potential in a material, determines the behaviour of the electrons in this material. Needless to say, the electrical potential is the DNA of a material or, in other words, it is the physical property which affects the propagation of electrons and therefore makes a material conducting or non-conducting. Nanostructures are often composed of several materials, hence the potential is not constant and, with opportune geometries, it is possible, in principle, to guide the electron currents through the device, as, for example, a channel in a MOSFET. This principle holds for very small structures where the electron transport can be considered ballistic, i.e. when the structures are smaller than the free mean path of the particle. The behaviour of the electrons is affected both by external factors, such as temperature or applied electric and magnetic fields, and internal factors, such as the electron mobility or the doping concentration, which are dependent on the used materials. This parameters play a very important role whilst modelling the behaviour of particles such as electrons and in this work the main focus is the study of the impact of external electromagnetic fields. The electromagnetic fields (EM fields) are composed of an electric field component and of a magnetic field component, which can be analysed separately in order to better understand the response of nanostructures to their application. A rigorous analysis is presented by showing numerical results, obtained with the modelling of the Schrodinger equation, compared with the expected theoretical results, exploiting simple structures, where it is possible to calculate the solutions analytically. The second part of thesis focuses on the impact of the EM fields on the nanostructure, hence the combined effect of both electric and magnetic fields affecting the electrons' propagation, and the mutual coupling of the fields with the quantum effects. Indeed the study of nanodevices for microwave applications requires to consider the contribution of a parameter called quantum current density, which accounts for the quantum effects generated by the structure. This is normally ignored in conventional devices because the quantum contributions are negligible but, by using opportune materials and opportune geometries, these currents become relevant and they may have an impact on the propagation of the EM fields. For this reason a consistent part of the thesis is dedicated to investigate the mutual coupling between EM fields and quantum effects, by implementing the Maxwell-Schrodinger coupled model. A chapter is dedicated to the novel approaches taken in order to tackle the issues and the limits of the numerical implementation; in particular two solutions are presented, nonuniform domains and the parallelisation of the algorithm. These approaches are vital whilst modelling numerically such physical problems since the required computational capacity increases with the accuracy requirements. Solving the presented algorithms conventionally would limit the potential of the method and thus a thorough study has been made in order to improve the efficiency of the simulations. In the last chapter, three different scenarios are presented, each one of them showing different features of the coupled model. The results are illustrated and discussed, including the limits due to the chosen approximations. References to the analytical solutions are provided in order to validate the obtained numerical results.
537

Fononske specifičnosti i termodinamika kristalnih nanostruktura / Phonon Specificities and Thermodynamics of Crystalline Nanostructures

Ilić Dušan 23 January 2014 (has links)
<p>U disertacije je sprovedeno teorijsko istraživanje mikroskopskih i makroskopskih (termodinamičkih) osobina tankoslojnih i niskodimenzionih kristalnih struktura u okviru modela fonona akustičkog tipa. Upoređivanjem fononskih spektara i termodinamičkih svojstava u neograničenim i posmatranim nanostrukturama ustanovljeno je da se oni znatno razlikuju usled postojanja granica kod niskodimenzionih sistema. Takođe je primećeno da u fononskim spektrima niskodimenzionih struktura postoji energijski procep, &scaron;to znači da je energija pobuđivanja fonona u niskodimenzionim kristalnim strukturama veća od one u balku. Ovo uzrokuje da toplotna kapacitivnost u niskotemperaturskoj oblasti ima i znatno niže vrednosti u ograničenim strukturama nego u masovnim uzorcima.</p> / <p>In ths work, a theoretical study of microscopic and thermodynamic properties of thin-layered and low-dimensional crystalline structures &nbsp;of the model type of acoustic phonons was carried out. Comparison of the phonon spectra and &nbsp;thermodynamic properties of the infinite with the observed &nbsp;nanostructures revealed that they differ greatly because of the existence of borders in the low-dimensional systems. It is also noted that in the phonon spectra of nanostructures an energy gap exists, which means that the energy od excitation of phonons in the nanostructured crystal systems is higher than those of the bulk. This indicates that the heat capacitance in the low-temperature range ha a significantly lower values in bounded structures than in massive samples.</p>
538

[en] SYNTHESIS AND CHARACTERIZATION OF SILICON NITRIDE NANOSTRUCTURES FROM THE CHEMICAL REACTION IN VAPOR PHASE / [pt] SÍNTESE E CARACTERIZAÇÃO DE NANOESTRUTURAS DE NITRETO DE SILÍCIO A PARTIR DA REAÇÃO QUÍMICA EM FASE VAPOR

MARIELLA CORTEZ CAILLAHUA 18 March 2019 (has links)
[pt] Pós nanoestruturados de nitreto de silício (Si3N4) foram sintetizados a 300 graus Celsius por precipitação a partir da reação em fase vapor entre o cloreto de silício (SiCl4) e a amônia (NH3). O argônio (Ar) foi utilizado como gás de arraste. Além do pó de nitreto de silício amorfo, o cloreto de amônio sólido (NH4Cl) é formado como subproduto. Os pós Si3N4 quando expostos à atmosfera são facilmente oxidados a oxi-nitreto de silício. As fases cristalinas do Si3N4 foram obtidas por tratamento térmico em uma atmosfera de argônio a 1500 graus Celsius por 2 horas. Caracterizações por Difração de Raios-X e Espectroscopia no Infravermelho com Transformada de Fourier (FTIR) revelaram as fases alfa-Si3N4 e beta-Si3N4, dióxido de silício e oxinitretos de silício. A Microscopia Eletrônica de Varredura por Emissão de Campo (MEV) e Microscopia Eletrônica de Transmissão (MET) mostrara diversas morfologias nas nanoestruturas tais como bastões, cristais facetados, fitas e fios amorfos. O padrão de difração de área selecionada (SADP) indica a natureza cristalina das partículas colunares e as imagens HRTEM revelaram que o espaçamento interplanar da rede é 0,67 nm, que se relaciona com o plano de rede (100) do alfa-Si3N4. A maior superfície específica determinada dos pós, por BET, foi de 96,56m(2)/g. / [en] Nanostructured silicon nitride powders (Si3N4) were synthesized at 300 Celsius degrees by precipitation from the vapor phase reaction between silicon chloride (SiCl4) and ammonia (NH3). Argon (Ar) was used as carrier gas. Solid ammonium chloride (NH4Cl) is formed as by-product, in addition to silicon nitride powder. When exposed to the atmosphere these powders are readily oxidized to silicon oxynitride. Crystalline phases of Si3N4 were obtained by heat treatment in an argon atmosphere at 1500 Celsius degrees for 2 hours. Characterization by X-ray Diffraction and Infrared Spectroscopy with Fourier Transform (FTIR) revealed formation of the alpha-Si3N4 and beta-Si3N4 phases, silicon dioxide and silicon oxynitrides. Field emission scanning electron microscopy (SEM-FEG) and Transmission Electron Microscopy (MET) showed different morphologies such as nano sticks, faceted crystals, ribbons and whiskers. The selected area diffraction pattern (SADP) indicates the crystalline nature of the columnar particles and the HRTEM images reveal that the lattice fringe spacing is 0.67 nm, which match with the (100) plane of alpha-Si3N4. The highest specific surface area of the powders determined, by BET, was 96.56 m(2)/g.
539

Optical Spectroscopy of Excitons at the Interfaces of Nanostructures

Raja, Archana January 2016 (has links)
Atomically thin quasi-two-dimensional materials like graphene and transition metal dichalcogenide (TMDC) layers exhibit extraordinary optical and electrical properties. They have not only been used as testing grounds for fundamental research but also show promise for their viability in optoelectronics, photovoltaics and photocatalysis, to name a few technological applications. In practice, seldom are these materials used in isolation. One often finds them as part of a multicomponent structure, or heterostructure. In a similar spirit as the influence of solvents on the properties of molecular complexes, nanomaterials are also affected by their dielectric environment. Engineering the effect of the surroundings on the excitations in these materials is both a challenge and an opportunity. Moreover, understanding the transport of energy and charge through these heterostructures is crucial for device design. In this dissertation I will explore the properties of excitations in zero-dimensional and two-dimensional nanostructures and their dependence on the details of the environment using optical spectroscopy. Here, I discuss three of the projects that I undertook during my graduate studies. The first project concerns the efficient near-field, non-radiative energy transfer (NRET) of photo-excited carriers from semiconductor nanocrystals to graphene and a TMDC, molybdenum disulfide. Photoluminescence quenching of single quantum dots and time-resolved photoluminescence were used to quantify the rate of energy transfer. The NRET rate exhibited surprisingly opposite trends with increasing number of layers of the acceptor 2D sheet. The rate increased with increasing thickness of adjacent graphene layers but decreased with increasing thickness of MoS₂. A model based on classical electromagnetism could successfully explain the countervailing trends in terms of the competition between the dissipative channels and reduction of the electric field within the 2D material. In the next project, the exciton binding energy and band gap in another TMDC, monolayer WS₂, were tuned via dielectric screening from the environment. Monolayers of WS₂ were capped with graphene layers of varying thickness (1 – 4 layers). The excitonic states of WS₂ in the resulting heterostructures were detected using reflectance contrast spectroscopy and theoretically studied by a semi-classical model. The binding energy of the exciton was halved to 150 meV by placement of a single layer of graphene adjacent to the WS₂. Furthermore, this dramatic decrease in the binding energy is accompanied by a reduction of the band gap by the same amount. Additionally, the average spacing between the graphene and WS₂ was also identified to be a critical parameter with respect to dielectric screening of the electron - hole interaction. This offers a flexible alternative for the external manipulation of the Coulomb interaction. In the final part, I study how excitons in WS₂ couple and scatter with the excitations of the lattice or phonons. The importance of this study stems from the contribution of the scattering rates to the spectral width of the excitonic feature, the dephasing dynamics and thermal transport. The transition from direct to indirect band gap semiconductor from mono- to bilayer is expected to add an additional scattering channel via phonon emission. Through temperature dependent reflectance contrast and photoluminescence spectroscopy, the scattering rate for the phonon emission and absorption processes have been quantified. Comparing the results to data reported in the literature, it is understood that the striking change for the scattering rates is expected only at the mono- to bilayer transition for WS₂. The results suggest material thickness as a handle for engineering exciton - phonon interactions at the nanoscale.
540

Nanostructured Platforms for Biological Study

Hu, Junqiang January 2016 (has links)
This thesis focuses on the study of nanotechnology and its applications in immunology and mechanosensing using micro- and nano-scale topographies, such as gratings, grids, and pillar substrates. In the past five years, we have developed three types of platforms and explored the influence of nano-patterned substrates on cell morphology, proliferation, protein secretion, and mechanosensing. I will introduce the three generations of Integrated Mechanobiology Platform (IMP) for T cell study, including the fabrication process of each generation of IMP, their advantages and disadvantages, and the comparison with existing High Throughput Screening System (HTSS). For the applications of IMP, I will focus on grating and grid topographies with IMP generation 3 format, and study how these nano-patterned substrates affect T cell morphology, expansion, cytokine secretion, drug-topography combination effects on T cells and long-term expansion for adoptive immunotherapy. I will demonstrate how IMP enables such studies in a high throughput manner. I also will discuss how Multiple Stiffness Pillar Platform (MSPP) facilitates the study of mechanosensing in cells spanning across different rigidities. First, I will talk about how MSPP is different from existing dual stiffness platforms. Differences include flexibility in distribution of different rigidities, consistency in pillar dimensions and ease of controlling the stiffness fold increase. In the sections of MSPP fabrication and characterization, I will focus on measurements of stiffness change and surface chemistry uniformity. I will then discuss the Mouse Embryonic Fibroblast (MEF) mechanosensing study on dual stiffness pillar substrates, including the preferential localization of rigidity sensing associated proteins (myosin IIA, phosph-myosin, paxillin, and p130CAS), MEFs actomyosin network building, and adhesion formation. These studies revealed previously undiscovered results in MEF mechanosensing, and demonstrate the great potential of MSPP in this research discipline. In the last part of this thesis, I will present on the mass production of thermoplastic nanopatterned molds. The demonstrated technology can produce large batches of nanostructured molds with decreased fabrication time and expense. In this chapter, I will discuss the necessity of developing such a technology and platform, as well as the design, fabrication, and characterization of the thermoplastic nano-patterned molds.

Page generated in 0.209 seconds