Spelling suggestions: "subject:"nanostructures métalliques"" "subject:"nanostructures métallliques""
1 |
Accroissement de l'absorption lumineuse au sein de cellules solaires à couches minces de silicium par addition de nanoparticules et de nanostructures métalliques / Thin-film silicon solar cells with integrated metal nanoparticles and metal nanostructures for enhanced light absorptionMoulin, Etienne 23 February 2009 (has links)
Afin de parvenir à des rendements élevés, les cellules solaires à couches minces de silicium doivent présenter une forte absorption de la lumière. Dans ce travail, nous proposons d'utiliser des nanoparticules et nanostructures métalliques comme nouvelle approche pour piéger la lumière au sein de cellules solaires à couches minces de silicium. Les propriétés optiques spécifiques des nanoparticules métalliques sont une conséquence de l'apparition d'un phénomène de résonance dans leur spectre d'absorption et de diffusion, connu sous le nom de résonance de «plasmon localisé de surface» (LSP : localized surface plasmons). Pour des particules suffisamment petites (<50nm), l'absorption LSP est accompagnée par une forte augmentation du champ électromagnétique à l'intérieur et au voisinage des nanoparticules, La première partie de ce travail est motivée par l'exploitation de ce renforcement du champ électromagnétique, Dans cette approche, l'objectif est de confiner la lumière dans la couche active des cellules solaires. La seconde approche est basée sur la diffusion de la lumière par des nanoparticules métalliques de diamètre supérieur à 50 nm ou par des nanostructures métalliques. La section efficace de diffusion d'une nanoparticule métallique augmente rapidement avec son diamètre et atteint un maximum à l'excitation LSP. Dans ce travail, des nanoparticules de diamètres supérieur à 50 nm et des nanostructures métalliques ont été incorporées dans la partie inférieure de cellules solaires en silicium amorphe ou microcristallin / In order to achieve high efficiencies, thin-film silicon solar cells need an efficient light absorption. In this thesis, we discuss new approaches based on metal nanoparticules and metal nanostructures for light trapping in thin-film silicon solar cells, The specific optical properties of metallic nanoparticles are a consequence of the appearence of a resonance in their absorption and scattering spectra, know as the localized surface plasmon( LSP) resonance. For sufficiently small particles (<50 nm), the LSP absorption is accompanied by a strong enhancement of the electromagnetic field inside and in the surrounding of the nanoparticles. The first part of this work is motivated by the utilization of this enhanced electromagnetic field. In this approach, we target to confine the light in the active layer of thin-film silicon solar cells, The second approach is based on the light scattering of large metal nanoparticles or nanostructures. The scateering cross section of metallic nanoparticules increases rapidly with their diameter and experiences a resonance at the LSP excitation. Therefore, large metal nanoparticules and metal nanostructures were integrated at the back side of thin-film silicon solar cells
|
2 |
Ingénierie d'indice optique à base de nanostructures métalliquesBouchon, Patrick 06 September 2011 (has links) (PDF)
Les nanostructures métalliques sont le siège de résonances plasmoniques qui permettent de confiner le champ électromagnétique et de contrôler la lumière à une échelle très sublongueur d'onde. Les travaux de cette thèse portent en premier lieu sur la conception de structures plasmoniques agissant en absorption. Dans cette thèse, j'ai dimensionné, fabriqué et caractérisé des résonateurs métal / isolant / métal verticaux (sillons à grand rapport d'aspect) qui présentent une absorption totale dans l'infrarouge. Par ailleurs, j'ai étudié le couplage fort dans ces résonateurs qui mène à de très grands facteurs de qualité. Je montre qu'on peut également coupler plusieurs résonateurs pour faire du tri de photons et de l'absorption large bande. D'autre part, les systèmes plasmoniques deviennent plus complexes, et leur dimensionnement rapide passe par une réduction du temps de calcul. J'ai développé une méthode modale basée sur les B-splines qui permet, grâce à l'utilisation de matrices creuses, d'accélérer les calculs. De telles méthodes peuvent être utilisées conjointement avec un algorithme métaheuristique pour dimensionner des fonctions optiques, par exemple un absorbant large bande ou un filtre passe bande.
|
3 |
Propriétés optiques de microstructures à base de nanofils métalliques / Optical properties of microstructures based on metallic nanowires obtained by laser induced photochemistryKouriba, Timothé 22 October 2012 (has links)
Nous avons utilisé une nouvelle méthode de photochimie laser pour la fabrication de microstructure 3D à base de nanofils métalliques. Les nanofils sont obtenus par photoréduction laser de sels métalliques dissous dans une matrice polymère. La réaction chimique est initiée par absorption à deux photons de photoréducteurs uniquement au point focal du laser. La géométrie des microstructures est obtenue en déplaçant le point focal du laser selon des trajectoires adaptées. Dans cette thèse nous avons étudié les propriétés optiques de structures à base de nanofils d'argent. Un nanofil qui occulte une onde plane crée un champ diffracté qui présente des trajectoires paraboliques de maximas et minimas d'intensité. Les calculs de Rayleigh-Sommerfeld montre que cette figure de diffraction typique correspond à l'inférence entre l'onde plane incidente et les ondes sphériques qui sont générées par diffraction sur les deux bords du nanofil. Lorsque les nanofils sont organisés en ensemble de nanofils parallèles distants de quelques microns, les champs diffractés donne des distributions d'intensité qui sont similaires à celles de microlentilles cylindriques. Dans ce cas l'interférence entre l'onde incidente et les ondes sphériques diffractées par les nanofils créée une distribution de phase quadratique qui est à l'origine de la focalisation. La fabrication de réseaux 2D de nanofils permet d'obtenir des réseaux de microlentilles très denses (10000x10000 DPI, dots per inch) qui ne sont pas réalisable avec des microlentilles réfractives. La possibilité de fabriquer des géométries 3D permet de manipuler les trajectoires des maxima et minima d'intensité pour obtenir de nouvelles fonctions diffractives à l'échelle microscopique. Par exemple, la fabrication de nanofils décalés dans l'espace nous a permis de développer un nouveau type de microdisposif optique qui permet la séparation spatiale des couleurs rouge, vert et bleu à l'échelle microscopique. / We used a novel method of laser photochemistry to fabricate 3D microstructures based on metallic nanowires. Nanowires are obtained by laser photoreduction of metallic salt dissolved in a polymer matrix. The chemical reaction is initiated by the two-photon absorption of a photoreductor only at laser focal point. The geometry of microstructures is obtained by moving laser focal point according to suitable trajectories. In this thesis, we have studied the optical properties of of structures based on silver nanowires. A nanowire that stops a plane wave creates a diffracted field which shows parabolic trajectories of maxima and minima intensities. Calculations based on Rayleigh-Sommerfeld diffraction show that this typical figure corresponds to interferences between the incident plane wave and spherical waves generated at the two nanowire edges. When nanowires are arranged into set of parallel nanowires, spaced by a few microns, their diffracted fields generate intensity distributions similar to those of cylindrical refractive microlenses. In that case interference between the incident wave and the diffracted wave leads to a quadrative phase which is the at origin of focalisation. Manufacturing 2D arrays of nanowires allow to achieve very dense arrays of microlenses (10000x10000 DPI, dots per inch), which are impossible to make with refractive microlenses. The possibility to make 3D geometry permit to manipulate maxima and minima intensity trajectories for new diffractive functions at the microscopic scale. For instance manufacturing nanowires shifted in space leads to a new type of optical microdevice that allows the spatial separation of colors red, green and blue at microscopic scale.
|
4 |
Technologie et étude de résonateurs plasmoniques à base d'InAsSb : vers une plasmonique tout semi-conducteur / Study and technology of InAsSb-based plasmonic resonators : towards semi-conductor plasmonicsNtsame Guilengui, Vilianne 20 December 2013 (has links)
Les plasmons de surface sont des quasi-particules résultant du couplage fort entre l'oscillation collective des porteurs libres d'un métal (plasma) et une onde électromagnétique. Ils sont générés à l'interface entre un métal et un diélectrique. Ils sont étudiés depuis plusieurs années pour leurs propriétés remarquables de confinement du champ électromagnétique à l'interface ou encore d'exaltation de ce même champ. Les plasmons de surface (SPP) sont à la base de la plasmonique, domaine qui exploite leurs propriétés optiques. L'une des caractéristiques principales des SPP est la fréquence plasma. Elle est proportionnelle à la densité de porteurs libres. La majorité des travaux effectués en plasmonique concerne les métaux nobles comme l'or ou l'argent. Cependant, leur utilisation est délicate dans certaines gammes de longueurs d'onde, telle que l'infrarouge, lorsqu'il est nécessaire d'exploiter l'exaltation du champ électrique pour la détection de molécules en biologie. Pour contrôler au mieux cet effet d'exaltation du champ électrique, il est nécessaire d'ajuster la fréquence plasma. Cela impossible pour les métaux nobles qui sont par ailleurs incompatibles avec les procédés actuels de la microélectronique. L'utilisation de semi-conducteurs fortement dopés en plasmonique permet de contourner ces limitations. En changeant le dopage ou le type de semi-conducteur, il est possible de changer la fréquence plasma du matériau et ainsi, d'obtenir des résonances plasmoniques dans le moyen infrarouge. Mon travail de thèse concerne la réalisation et la caractérisation de réseaux plasmoniques à base semi-conducteurs dopés. Les échantillons sont constitués d'une couche d'InAsSb (antimoniure d'arséniure et d'indium) dopée au silicium. Cette couche est déposée par épitaxie par jets moléculaires (MBE) sur un substrat de GaSb (antimoniure de gallium). Dans un premier temps j'ai mis au point un moyen de caractérisation rapide et non destructif du niveau de dopage dans les couches d'InAsSb et donc de la fréquence plasma, basé sur la réflectivité en angle. Un modèle théorique basé sur le mode de Brewster m'a permis d'expliquer les résultats expérimentaux. J'ai ensuite mis au point les étapes technologiques permettant de réaliser les rubans d'InAsSb. Elles sont basées sur de la lithographie interférentielle, la gravure chimique humide et la gravure sèche par plasma. En modifiant les dimensions du réseau, j'ai démontré la possibilité de contrôler les propriétés optiques des résonateurs plasmoniques. Enfin, nous avons fabriqué des réseaux d'InAsSb enterrés, en procédant à une reprise d'épitaxie par MBE d'une couche de GaSb sur le réseau InAsSb. Nous arrivons ainsi à planariser la structure en conservant sa cristallinité. J'ai donc démontré qu'il était possible d'intégrer des structures plasmoniques à des composants photoniques opérant dans l'infrarouge en utilisant seulement des semi-conducteurs. La voie est ouverte pour le développement d'une plasmonique infrarouge tout-semi-conducteurs. Mon travail de thèse est pionnier dans ce domaine. / Surface plasmons polaritons (SPP) are quasi-particles resulting from the strong coupling between the collective oscillations of free carriers in a metal and an electromagnetic wave. They are generated at the interface between a metal and a dielectric. They are studied in detail for several years for their outstanding properties of electromagnetic field confinement at the interface or of filed exaltation. SPP are the building blocks of plasmonics, the area that exploit their optical properties. One of the main characteristics of the SPP is the plasma frequency which is proportional to the density of free carriers. Plasmonics is essentially based on noble metals like gold or silver. However, noble metals are difficult to use in certain ranges of wavelengths, such as infrared, to exploit the electric field exaltation for the detection of molecules in biology. To improve the control of this electric field exaltation, it is necessary to adjust the plasma frequency. It impossible with noble metals that are otherwise incompatible with current microelectronics processes. To overcome these limitations we propose to use heavily doped semiconductors. By changing the doping or the type of the semiconductor, it is possible to change the plasma frequency and thus obtain plasmonic resonances in the mid-infrared. My work deals with the realization and the characterization of doped semiconductors plasmonic gratings. The samples consist of an InAsSb (indium, arsenide, antimonide) layer doped with silicon. This layer is deposited by molecular beam epitaxy (MBE) on a GaSb substrate (gallium antimonide). I have developed an experimental technique based angular dependent reflectivity of rapid and non-destructive characterization of the doping level in the InAsSb layers and thus the plasma frequency. A theoretical model based on Brewster modes allowed explaining the experimental results. I then developed a technological process to achieve the InAsSb gratings. They are based on interference lithography, chemical wet etching and dry plasma etching. By changing the size of the grating, I have demonstrated the ability to control the optical properties of plasmonic resonators. Finally, we have made of InAsSb grating buried into a GaSb layer, using a regrowth by MBE technique. The structure is planarized with a good crystallinity. So it is possible to integrate plasmonic resonators nearby photonic compounds operating in the infrared using only semiconductors. We pave the way for the development of all-semiconductor infrared plasmonics. My thesis is a pioneer work in this field.
|
5 |
Propriétés optiques de microstructures à base de nanofils métalliquesKouriba, Timothe 22 October 2012 (has links) (PDF)
Nous avons utilisé une nouvelle méthode de photochimie laser pour la fabrication de microstructure 3D à base de nanofils métalliques. Les nanofils sont obtenus par photoréduction laser de sels métalliques dissous dans une matrice polymère. La réaction chimique est initiée par absorption à deux photons de photoréducteurs uniquement au point focal du laser. La géométrie des microstructures est obtenue en déplaçant le point focal du laser selon des trajectoires adaptées. Dans cette thèse nous avons étudié les propriétés optiques de structures à base de nanofils d'argent. Un nanofil qui occulte une onde plane crée un champ diffracté qui présente des trajectoires paraboliques de maximas et minimas d'intensité. Les calculs de Rayleigh-Sommerfeld montre que cette figure de diffraction typique correspond à l'inférence entre l'onde plane incidente et les ondes sphériques qui sont générées par diffraction sur les deux bords du nanofil. Lorsque les nanofils sont organisés en ensemble de nanofils parallèles distants de quelques microns, les champs diffractés donne des distributions d'intensité qui sont similaires à celles de microlentilles cylindriques. Dans ce cas l'interférence entre l'onde incidente et les ondes sphériques diffractées par les nanofils créée une distribution de phase quadratique qui est à l'origine de la focalisation. La fabrication de réseaux 2D de nanofils permet d'obtenir des réseaux de microlentilles très denses (10000x10000 DPI, dots per inch) qui ne sont pas réalisable avec des microlentilles réfractives. La possibilité de fabriquer des géométries 3D permet de manipuler les trajectoires des maxima et minima d'intensité pour obtenir de nouvelles fonctions diffractives à l'échelle microscopique. Par exemple, la fabrication de nanofils décalés dans l'espace nous a permis de développer un nouveau type de microdisposif optique qui permet la séparation spatiale des couleurs rouge, vert et bleu à l'échelle microscopique.
|
6 |
Transport quantique dans les verres de spin / Quantum transport in spin glassesCapron, Thibaut 30 March 2011 (has links)
Le verre de spin est une phase de la matière dans laquelle le désordre magnétique est gelé. Étant considéré comme un système modèle des verres en général, il a fait l'objet de nombreux travaux théoriques et expérimentaux. Les recherches ont convergé vers deux principales descriptions de l'état fondamental du système diamétralement opposées. D'une part, la solution « champ-moyen » nécessite une brisure de symétrie non triviale, et l'état fondamental est composé de multiples états organisés en une structure hiérarchique. D'autre part, une approche de « gouttelettes », fondée sur la dynamique hors-équilibre d'un état fondamental unique. La validation expérimentale d'une de ces deux théories nécessite une observation détaillée de l'échantillon au niveau microscopique. La physique mésoscopique, basée sur les effets d'interférences électroniques, propose un outil unique pour accéder à cette configuration microscopique des impuretés: les fluctuations universelles de conductance. En effet, ces fluctuations représentent une empreinte unique du désordre dans l'échantillon. Ce travail présente la mise en œuvre de mesures de fluctuations de conductance universelles dans les verres de spin. Les effets d'interférences électroniques étant sensibles aux processus de décohérence du verre de spin, ils donnent accès expérimentalement à de nouvelles quantités concernant les excitations du système. La mesure des corrélations entre les empreintes du désordre permet quant à elle d'explorer sous un angle nouveau l'ordre non conventionnel de cet état vitreux. / The spin glass is a state of matter in which the magnetic disorder is quenched. Being considered as a model system for glasses in general, it has been extensively studied, both theoretically and experimentally. The research have converged towards two main descriptions of the fundamental state of the system that are clearly antagonist. On the one hand, the “mean-field” solution has a non trivial broken symmetry, and the ground state is composed of multiple valleys in a hierarchical structure. On the other hand, a magnetic “droplet” model, based on the off-equilibrium dynamics of a unique ground state. The experimental validation of one of these two theories requires a detailed observation of the sample at the microscopic level. Mesoscopic physics, which deals with interference effects of the electrons, proposes a unique tool to access to this microscopic configuration of the impurities: the universal conductance fluctuations. Indeed, these fluctuations represent a unique fingerprint of the sample disorder. This work presents the implementation of universal conductance fluctuations measurements in spin glasses. The electron interference effects being sensitive to the decoherence processes of the spin glass, they give access experimentally to new quantities related to the excitations of the system. The measurement of correlations between the disorder fingerprints allow to explore under a new perspective the non conventional order of this glassy state.
|
7 |
Transport quantique dans les verres de spins / Quantum transport in spin glassesForestier, Guillaume 30 March 2015 (has links)
Les travaux expérimentaux présentés dans cette thèse associent deux pans de la physique de la matière condensée, avec d'un côté la physique des verres de spins et de l'autre la physique mésoscopique. Le verre de spins est un exemple emblématique de système désordonné et frustré, il se caractérise à basse température par un ordre magnétique non conventionnel, où le désordre magnétique apparaît gelé. De plus, celui-ci est considéré comme un système modèle pour étudier les verres en général et de ce fait, il a fait l'objet de nombreuses études expérimentales et théoriques. Après d'importants efforts de recherche, la description de l'état fondamental de ce système a abouti à deux approches très différentes. La première, donnée par la résolution non triviale du problème en champ moyen, met en avant un état fondamental composé d'une multitude d'états organisés et hiérarchisés. La deuxième approche, dite des "gouttelettes", se base quant à elle sur la dynamique hors équilibre d'un unique état. Cependant, en dépit de ces contributions, la compréhension de cette phase est loin d'être complète et la nature de l'état fondamental reste encore un débat ouvert. Dans un conducteur mésoscopique, le transport se fait de manière cohérente : les électrons gardent la mémoire de leur phase, ce qui permet d'observer des effets d'interférences électroniques. La motivation à la base de ce travail est d'utiliser ces effets d'interférences comme outil pour étudier le verre de spins. En effet, étant donné que les interférences électroniques dépendent intiment de la disposition du désordre statique du conducteur, le transport cohérent peut se révéler être une sonde microscopique très efficace pour étudier la configuration du désordre dans un conducteur. Bien que quelques expériences pionnières de transport cohérent existent dans des verres de spins, ce domaine de recherche n'a que très peu été exploré. Néanmoins, il a connu un récent renouveau grâce à des travaux théoriques qui montrent de quelle manière cette sonde est sensible au désordre magnétique gelé et comment elle peut fournir des informations sur la nature de l'état fondamental du verre de spins. Ainsi, ce travail de thèse expérimental présente l'implémentation de mesure de transport dans des verres de spins mésoscopiques. La première partie de l'étude est consacrée aux caractéristiques générales de transport classique et quantique de ces systèmes. Nous avons examiné les propriétés de la résistivité en fonction de la température et du champ magnétique et nous montrons que ces systèmes mésoscopiques possèdent bien des comportements attendus pour des verres de spins. Dans une deuxième partie, nous nous sommes intéressés au comportement de la magnétorésistance à bas. Nous avons mis en avant que celle-ci présente une forte hystérésis dont l'amplitude dépend fortement, de la température dans la phase vitreuse et de la vitesse de balayage du champ magnétique. Nous avons argumenté que ce comportement particulier traduit la mise hors équilibre du système et montrons comment la température et la vitesse de balayage du champ magnétique pilotent l'écart à l'équilibre. Dans cette partie, nous avons aussi examiné par des mesures de transport la relaxation du système vers l'équilibre, après l'avoir excité. Nous présentons également les propriétés de transport étonnantes que nous avons observées à bas champ, résultant de protocoles en températures et en champs magnétiques plus complexes. / The experiments presented in this thesis associate two fields of condensed matter physic, on the one hand with the spin glass physic and the other hand with the mesoscopic physic. The spin glass state is one of the most emblematic of disordered and frustred system and at low temperature, it is caracterized by an unconventionel order where the magnetic disorder is quenched. Moroever, it is considered as a model system for glasses in general and thereby it has been extensively studied, both experimentally and theoreticlly. After extensive research efforts, the description of fundamental state of the system has lead towards two well different approaches. The first, given by the mean field solution, highlights a fundamental composed of mulitple states organised and hierarchical. The second, called droplet model is based on the off--equilibrium dynamic of a unique ground state. However, despite these contributions, the understanding ot this phase is far from being complete and the nature of the ground state still remains an open question. In a mesoscopic conductor, the transport of electron is coherent: electrons keep the memory of their phase, so that one can observe interference effects. The main motivation of this work is to use these interference effects in order to to probe the spin glass state. Indeed, as electronic interference depends of the position of the static disorder, coherent transport can be a useful tool to study the configuration of the microscopic disorder. Althought few coherent transport experiments exist to probe the spin glass, this field of research has very little explored. Nevertheless, this area has been a revival thanks to theoritical work, showing how coherent transport is sensitived to the quenched disorder and how it may provide informations of the nature of fundamental state of spin glass. So, this experimental work deals with the implementation of transport measurements in mesoscopic spin glasses. The first part of the study is focused on the general charateristics of classical and quatum transport of these system. We have examined the resistivity as a function of the temperature and magnetic field and we show that these mesoscopic systems have a spin glass-like behaviour. In a second part, we have focused on the low field magnetoresistivity. We show that it presents a strong hysteresis, whose the amplitude is strongly depends, both of the temperature in the glassy phase and sweeping rate of the magnetic field. We argue that this particular behaviour is related to the out off-equilibrium of the system and we show how the temperature and the sweeping rate control the deviation to the equilibrium. In this part, we also examine by transport measurements how the system relaxes towards the equilibrium just after its excitation. In addition, we present surprinsing transport propreties that we observed, resulting of experimental protocols more sophisticated in temperatures and magnetic fields.
|
8 |
Cohérence Quantique et Effet Kondo dans les NanostructuresSchopfer, Félicien 03 June 2005 (has links) (PDF)
Les effets de cohérence quantique sont au cœur de la physique mésoscopique : ils gouvernent le comportement des conducteurs dont la taille devient comparable à la longueur de cohérence de phase des électrons Lf.<br />Les expériences présentées dans cette thèse concernent les effets de la cohérence de phase électronique sur les propriétés de transport de conducteurs métalliques diffusifs.<br />Nous nous sommes d'abord intéressés aux mécanismes de déphasage électronique en mesurant la magnétorésistance de localisation faible de fils quasi-1D en or contenant des impuretés magnétiques de fer, à très basse température. Le comportement du temps de cohérence de phase électronique tf mesuré s'explique bien dans le cadre de la physique des impuretés Kondo, par la combinaison de l'effet Kondo à une impureté, et des interactions entre impuretés de type RKKY. Ce résultat est une contribution importante dans le débat sur la saturation de tf à très basse température.<br />Ensuite, nous avons étudié les oscillations quantiques de magnétoconductance, Altshuler-Aronov-Spivak (AAS), et Aharonov-Bohm (AB), dans des réseaux 2D d'anneaux en argent présentant différentes géométries. Notamment, à partir d'une théorie récente, nous avons extrait tf à partir des harmoniques de Fourier de l'oscillation AAS. La dépendance en température mesurée, différente de celle extraite d'un fil quasi-1D, laisse supposer un effet de la topologie sur le déphasage. Enfin, nous avons mesuré la dépendance en taille des amplitudes des oscillations AB et AAS dans des réseaux de 10^6 à 10 anneaux : lorsqu'une dimension du réseau devient inférieure à Lf, la moyenne d'ensemble des oscillations quantiques est non triviale, révélant que des interférences quantiques subtiles dominent le transport. C'est une signature spectaculaire de la transition dimensionnelle vers la physique mésoscopique.
|
9 |
Propriétés électroniques locales de nanostructures métalliques: Etats de surface et effets de confinementPons, Stéphane 30 September 2002 (has links) (PDF)
Ce manuscrit présente une étude par microscopie à effet tunnel de surfaces de métaux de transition, dont les propriétés électroniques sont remarquables près du niveau de Fermi. Ces surfaces de métaux nobles, de nickel et de fer, possèdent des états électroniques localisés en surface, magnétiques ou non, fortement ou faiblement dispersifs. Pour ce travail nous avons utilisé la grande résolution spatiale du microscope pour analyser la structure atomique de surface, et également pour repérer et/ou créer des objets uniques nanométriques afin d'en étudier les propriétés électroniques par des mesures de conductance tunnel. Les nanostructures qui sont présentées ici sont souvent le siège d'un confinement électronique qui se traduit par la présence d'interférences quantiques observables sous forme d'ondes stationnaires électroniques par un microscope à effet tunnel. Dans un premier temps, nous présentons du point de vue théorique les propriétés physiques des états électroniques de surface dits de « Shockley » des métaux nobles et leur interaction avec les défauts statiques. Ensuite, nous exposons la méthode de mesure locale des propriétés magnétiques qui nous semble très performante et les résultats préliminaires que nous avons obtenus avec un système de film mince de Fe/Ag(001). La recherche d'échantillon magnétique présentant un état de surface nous a conduit à nous intéresser à un autre type de surface : Ni(111). Nous montrons comment nous pouvons nous servir des effets d'interférences quantiques observées dans des nanostructures de nickel créées par nano-indentation pour caractériser les propriétés électroniques de Ni(111). L'étude suivante concerne le dépôt de couches ultra-minces de Ni/Cu(111). Nous y étudions la chimie de la surface, des effets de diffusion d'atomes, et surtout les propriétés électroniques de nanostructures de nickel et de cuivre. Nous y discutons aussi de l'influence de la présence de Ni et Cu dans ces objets sur leurs propriétés électroniques.
|
10 |
Transport quantique dans les verres de spinCapron, Thibaut 30 March 2011 (has links) (PDF)
Le verre de spin est une phase de la matière dans laquelle le désordre magnétique est gelé. Étant considéré comme un système modèle des verres en général, il a fait l'objet de nombreux travaux théoriques et expérimentaux. Les recherches ont convergé vers deux principales descriptions de l'état fondamental du système diamétralement opposées. D'une part, la solution " champ-moyen " nécessite une brisure de symétrie non triviale, et l'état fondamental est composé de multiples états organisés en une structure hiérarchique. D'autre part, une approche de " gouttelettes ", fondée sur la dynamique hors-équilibre d'un état fondamental unique. La validation expérimentale d'une de ces deux théories nécessite une observation détaillée de l'échantillon au niveau microscopique. La physique mésoscopique, basée sur les effets d'interférences électroniques, propose un outil unique pour accéder à cette configuration microscopique des impuretés: les fluctuations universelles de conductance. En effet, ces fluctuations représentent une empreinte unique du désordre dans l'échantillon. Ce travail présente la mise en œuvre de mesures de fluctuations de conductance universelles dans les verres de spin. Les effets d'interférences électroniques étant sensibles aux processus de décohérence du verre de spin, ils donnent accès expérimentalement à de nouvelles quantités concernant les excitations du système. La mesure des corrélations entre les empreintes du désordre permet quant à elle d'explorer sous un angle nouveau l'ordre non conventionnel de cet état vitreux.
|
Page generated in 0.1066 seconds