Spelling suggestions: "subject:"nasopharyngeale"" "subject:"nasopharyngealem""
71 |
Functional studies of Epstein-Barr virus latent membrane protein 1 in nasopharyngeal epithelial cellsLi, Hoi-ming, 李海明 January 2004 (has links)
published_or_final_version / abstract / toc / Anatomy / Doctoral / Doctor of Philosophy
|
72 |
A molecular study of NPC pathogenesis容振威, Yung, Chun-wai. January 1994 (has links)
published_or_final_version / Microbiology / Master / Master of Philosophy
|
73 |
Investigation of radio- and chemosensitivity mechanisms in Nasopharyngeal Carcinoma cells周淑雅, Chow, S. N. January 2000 (has links)
published_or_final_version / Pathology / Master / Master of Philosophy
|
74 |
Domestic incense burning and the risk of nasopharyngeal carcinoma: a case-referent study among Hong Kong Chinese / 病例對照研究 / 謝少華. / 室內燃香與香港華人的鼻咽癌發病風險: 病例對照研究 / CUHK electronic theses & dissertations collection / Domestic incense burning and the risk of nasopharyngeal carcinoma: a case-referent study among Hong Kong Chinese / bing li dui zhao yan jiu / Xie Shaohua. / Shi nei ran xiang yu Xianggang Hua ren de bi yan ai fa bing feng xian: bing li dui zhao yan jiuJanuary 2013 (has links)
Xie, Shaohua = 室內燃香與香港華人的鼻咽癌發病風險 : / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 124-153). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese; appendixes includes Chinese. / Xie, Shaohua = Shi nei ran xiang yu Xianggang Hua ren de bi yan ai fa bing feng xian :
|
75 |
Illness trajectory of patients suffering from nasopharyngealcarcinomaCheng, Yuk-yi, Josephine., 鄭玉儀. January 1997 (has links)
published_or_final_version / Social Work / Master / Master of Social Sciences
|
76 |
Functional study of the EBV-encoded RNAs (EBERs) in nasopharyngeal epithelial cellsWong, Hing-lok., 黃慶樂. January 2005 (has links)
published_or_final_version / abstract / Anatomy / Doctoral / Doctor of Philosophy
|
77 |
Epstein-barr virus infection in nasopharyngeal epithelial cellsTsang, Chi-man., 曾智敏. January 2008 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
78 |
Advances in nasopharyngeal cancer: new targets, biomarkers and therapies. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Nasopharyngeal cancer (NPC) is endemic in Southern China and Hong Kong. It has traditionally been treated by local radiotherapy with great success especially for early stage disease. However the treatment outcome in advanced stage disease is unsatisfactory. / Results from this series of combined clinical, translational and laboratory studies have redefined the role of hypoxia, angiogenesis and metastasis as new therapeutic targets in NPC. Novel biomarkers and new therapeutic approaches were developed based on these targets. / To develop new therapies in NPC, we demonstrated in a randomized controlled phase 2 clinical trial that sequential therapy of neoadjuvant chemotherapy followed by chemoradiotherapy was well tolerated with a manageable toxicity profile that allowed subsequent delivery of full dose chemoradiotherapy. This strategy reduced distant metastasis which translated into improved patient survival. In preclinical studies, the antiangiogenesis agent sunitinib demonstrated potent in vitro and in vivo growth inhibition in NPC. In a phase 2 clinical trial, sunitinib demonstrated modest clinical activity in heavily pretreated NPC patients. However, the unexpected high incidence of severe hemorrhage from upper aero-digestive tract in NPC patients who received prior high dose RT to the region is of concern. We propose to exclude NPC patients with disease recurrence within previous radiation field and/or with vascular invasion from future antiangiogenesis therapy. / To investigate potential new therapeutic targets and biomarkers in NPC, we first confirmed from the Hong Kong NPC study group of 2915 patients' database that distant metastasis was the leading cause of NPC failure after primary radiotherapy. We further showed that hypoxia induced broad changes of both up- and down-regulated gene expressions involved in diverse biological processes in NPC cells. Over-expression of biomarkers of hypoxia and angiogenesis (including HIF-1alpha, CA IX and VEGF) is common in NPC and is associated with poor prognosis. Elevated plasma osteopontin is a biomarker of distant metastasis, and pre-treatment plasma osteopontin level may be a useful biomarker of response to radiotherapy in NPC. / Hui, Pun. / "September 2010." / Adviser: Anthony Chan. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (M.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 269-293). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
|
79 |
Transcriptome analysis of nasopharyngeal carcinoma (NPC): identification and characterization of NPC-related genes. / 鼻咽癌之轉錄體研究 / CUHK electronic theses & dissertations collection / Bi yan ai zhi zhuan lu ti yan jiuJanuary 2008 (has links)
Genes identified by SAGE may serve as potential prognostic marker or therapeutic target. 14-3-3 sigma is a putative tumor suppressor and can be induced in response to DNA damage following irradiation, leading to cell cycle arrest in G2/M in human cancer cells. Our SAGE results revealed that 14-3-3 sigma expression is significantly downregulated in C666-1 cells. The study of 72 primary NPCs showed that an increased expression of 14-3-3 sigma was associated with a poorer clinical outcome in terms of shorter overall survival (OS; p=0.0297) and shorter disease free survival (DFS; p=0.042) using univariate analysis. Hence, 14-3-3 sigma may be used as an independent prognostic marker for NPC patients. / In conclusion, a NPC transcription profile has been successfully generated and several candidate NPC-associated genes have been identified by Serial Analysis of Gene Expression (SAGE) and NPC transcriptome map. These novel findings lead to better understanding of the molecular basis of NPC development and provide a foundation for discovery of new therapeutic strategies. / Nasopharyngeal carcinoma (NPC) is one of the most prevalent cancers among Southern Chinese. To better understand the genetic basis of this disease, Serial Analysis of Gene Expression (SAGE) was performed to investigate the transcriptional profiles of an EBV-positive NPC cell line (C666-1) and a normal NP outgrowth (NP4). A total of 102,059 SAGE tags were extracted in both libraries and 250 genes with 10-fold or more differential expression were found in NPC cells compared to normal NP cells. Eleven differentially expressed genes identified by SAGE were selected for confirmation using real time RT-PCR. The transcripts for 5 of the 11 genes, CD 74, Transcriptional intermediary factor 1, Ferritin 1, Claudin 4, and fatty acid synthase were overexpressed in NPC cells. Conversely, the remaining transcripts including Keratin 17, Keratin 5, S100 calcium-binding A2, Cystatin A, 14-3-3 sigma and Caveolin 1 were underexpressed in NPC cells. The aberrant expression of CD74, Claudin 4, Fatty acid synthase, 14-3-3 sigma, Caveolin 1 were further validated by immunohistochemistry on 20 NPC patients. / On the other hand, fatty acid synthase (FASN), a key enzyme for de novo lipogenesis, is a putative therapeutic target in treating NPC. Immunohistochemical studies showed upregulation of FASN in 20.8% (15/72) of the NPC cases compared with the adjacent normal NP epithelium. In addition, FASN expression also had prognostic significance in predicting the outcome of patients after radiotherapy, as high levels of FASN expression were associated with worse overall survival (OS, p=0.032) and disease free survival (DFS, p=0.002) in NPC patients. FASN inhibitors, such as C75 which inhibit cell growth via cell cycle arrest in G2/M phase, are potential chemotherapeutic agents in treating NPC. / The genome-wide quantitative analysis of gene expression by SAGE with matched chromosomal positions enables the construction of a transcriptome map of NPC. A total of 8 and 29 overexpressed and underexpressed gene clusters were observed, respectively. Some novel regions that have never been illustrated in previous reports such as amplification regions at 2p11.2-p25.1, 2q33-q37, 9q22-q34, 17p11.2-p13.2 and deletion regions at 1p12-p31.2, 1q25-q42.12, 2q21.3-q33, 8p21.1-p22, 9q33-q34.3, 10q23.3-q26.3, 12p13, 16p13, 17q23.2-q25, 19p13, 19q12-q13.2, 20p11-p13, 22q13, Xp11.2-p11.4, and Xq26-q28 were also identified. A candidate tumor suppressor gene named MEG3 has been found within an underexpressed region at 14q32.2 in the NPC transcriptome map. Our FISH analysis revealed that chromosome loss at 14q32 is associated with hypermethylation of MEG3 promoter region in 9/13 (75%) of NPC patients. Loss of imprinting is the major mechanism that governs the MEG3 expression. Moreover, transient transfection of one of the MEG3 isoforms (accession no. AF119863) could obviously inhibit cell colony formation of NPC cells. Taken together, MEG3 gene on chromosome 14q32.2 might act as a tumor suppressor in NPC. / Chan, Yat Yee. / "March 2008." / Adviser: Lo Kwok Wai. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1605. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (p. 196-225). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
80 |
Histone deacetylase inhibitors are effective therapeutic agents in nasopharyngeal carcinoma cells.January 2006 (has links)
Wong Yue Hang Albert. / Thesis submitted in: December 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 108-119). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / List of Figures --- p.x / List of Tables --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Literature Review --- p.4 / Chapter 2.1 --- Nasopharyngeal Carcinoma (NPC) --- p.4 / Chapter 2.1.1 --- Anatomy of Nasopharynx --- p.4 / Chapter 2.1.2 --- Histopathology of Nasopharyngeal Carcinoma --- p.5 / Chapter 2.1.3 --- Epidemiology and Etiology of Nasopharyngeal Carcinoma --- p.5 / Chapter 2.1.3.1 --- Endemic Regions of Nasopharyngeal Carcinoma --- p.5 / Chapter 2.1.3.2 --- Gender and Age Bias --- p.6 / Chapter 2.1.3.3 --- Nasopharyngeal Carcinoma in Hong Kong --- p.6 / Chapter 2.1.3.4 --- Environmental Factors and Diet --- p.7 / Chapter 2.1.3.5 --- HLA Haplotypes and Nasopharyngeal Carcinoma --- p.9 / Chapter 2.1.4 --- Epstein-Barr Virus (EBV) and Nasopharyngeal Carcinoma --- p.10 / Chapter 2.1.4.1 --- EBV and Human Cacners --- p.10 / Chapter 2.1.4.2 --- EBV Infection --- p.10 / Chapter 2.1.4.3 --- "Latent, Clonal EBV Infection" --- p.11 / Chapter 2.1.4.4 --- EBV Latency Form --- p.11 / Chapter 2.1.4.5 --- Reactivation of EBV --- p.12 / Chapter 2.1.5 --- Molecular Pathogenesis of Nasopharyngeal Carcinoma --- p.13 / Chapter 2.1.5.1 --- Genetic Changes --- p.13 / Chapter 2.1.5.2 --- Epigenetic Changes --- p.13 / Chapter 2.1.6 --- Therapy of Nasopharyngeal Carcinoma and its Deficiency --- p.14 / Chapter 2.1.6.1 --- Radiotherapy --- p.14 / Chapter 2.1.6.2 --- Concurrent Chemoradiotherapy --- p.16 / Chapter 2.1.6.3 --- Adjuvant and Neo-adjuvant Chemotherapy --- p.17 / Chapter 2.1.6.4 --- Chemotherapy in Metastatic Nasopharyngeal Carcinoma --- p.18 / Chapter 2.1.6.5 --- Novel Therapeutic Agents and Approach --- p.19 / Chapter 2.2 --- Histone Modification and Cancer --- p.20 / Chapter 2.2.1 --- Histone Modification and Transcription Regulation --- p.20 / Chapter 2.2.2 --- Carcinogenic Effect of Aberrant HAT and HDAC Activities --- p.21 / Chapter 2.2.3 --- Structural Classes of HDAC Inhibitors --- p.24 / Chapter 2.2.4 --- Anti-Cancer Mechanisms of HDAC Inhibitors --- p.25 / Chapter 2.3 --- Suberoylanilide Hydroxamic Acid (SAHA) --- p.27 / Chapter 2.3.1 --- Anti-tumor Effect of SAHA in Various Cancer Cell Lines --- p.27 / Chapter 2.3.2 --- SAHA Mediated Non-apoptotic Programmed Cell Death --- p.29 / Chapter 2.3.3 --- Anti-tumor and Preventive Effect of SAHA in Animal Model --- p.29 / Chapter 2.3.4 --- Clinical Trials of SAHA --- p.30 / Chapter 2.4 --- FK228 (Depsipeptide or FR901228) --- p.31 / Chapter 2.4.1 --- Anti-malignancy mechanism of FK228 --- p.31 / Chapter 2.4.2 --- Anti-angiogenesis --- p.32 / Chapter 2.4.3 --- Drug Resistance and FK228 --- p.33 / Chapter 2.4.4 --- Studies of FK228 on Animal Models --- p.33 / Chapter 2.4.5 --- Clinical Trials --- p.34 / Chapter 2.5 --- Histone Modification and Nasopharyngeal Carcinoma --- p.34 / Chapter Chapter 3 --- Materials and Methods --- p.36 / Chapter 3.1 --- Cell Lines --- p.36 / Chapter 3.2 --- EBER ish Hybridization (EBER ISH) --- p.37 / Chapter 3.3 --- HDAC Inhibitors --- p.38 / Chapter 3.4 --- Cellular Sensitivity of NPC Cell Lines to HDAC Inhibitors --- p.38 / Chapter 3.4.1 --- Drug Treatment --- p.38 / Chapter 3.4.2 --- Determining Relative Amount of Survival Cells (WST-1 Assay) --- p.39 / Chapter 3.5 --- Flow Cytometry Analysis --- p.40 / Chapter 3.5.1 --- Collecting Cells and Fixation --- p.40 / Chapter 3.5.2 --- Staining --- p.41 / Chapter 3.5.3 --- Flow Cytometry Analysis --- p.41 / Chapter 3.6 --- Protein Extraction --- p.41 / Chapter 3.6.1 --- Harvesting Samples --- p.41 / Chapter 3.6.2 --- Protein Extraction --- p.42 / Chapter 3.6.3 --- Protein Quantification --- p.42 / Chapter 3.7 --- Western Blotting --- p.43 / Chapter 3.7.1 --- SDS-Polyarcylamide Gel Electrophoresis (PAGE) (SDS-PAGE) --- p.43 / Chapter 3.7.2 --- Wet Transfer of Proteins --- p.43 / Chapter 3.7.3 --- Immunoblotting --- p.44 / Chapter 3.7.4 --- Signal Detection --- p.44 / Chapter 3.8 --- CodeLin´kёØ Oligonucleotide Microarray --- p.45 / Chapter 3.8.1 --- HDAC Inhibitor Treatment --- p.45 / Chapter 3.8.2 --- RNA Extraction --- p.45 / Chapter 3.8.3 --- Quality and Quantity Assessment of Total RNA Extracted --- p.46 / Chapter 3.8.4 --- CodeLinkIM Expression Bioarray System --- p.46 / Chapter 3.8.5 --- Data Analysis --- p.48 / Chapter 3.9 --- Real-time Reverse Transcription PCR (Real-time RT-PCR) --- p.48 / Chapter Chapter 4 --- Results --- p.50 / Chapter 4.1 --- Presence of EBV --- p.50 / Chapter 4.2 --- Anti-prolirative Effect of HDAC Inhibitors --- p.52 / Chapter 4.3 --- Histone Acetylation --- p.56 / Chapter 4.4 --- Induction of p21 Expression in NPC Cell Lines --- p.58 / Chapter 4.5 --- HDAC Inhibitors Induced Cell Cycle Arrest and Polyploidy Formation --- p.60 / Chapter 4.5.1 --- Trichostatin A Induced G2/M Arrest --- p.60 / Chapter 4.5.2 --- Suberoylanilide Hydroxamic Acid Induced G1 Arrest --- p.62 / Chapter 4.5.3 --- FK228 Mediated G2/M Arrest --- p.64 / Chapter 4.6 --- HDAC Inhibitors Altered the Expression of Cell Cycle Regulatory Proteins --- p.66 / Chapter 4.6.1 --- TSA Down-regulated Cyclin A and B --- p.66 / Chapter 4.6.2 --- Suppressed Expression of Cyclin D1 and B by SAHA --- p.69 / Chapter 4.6.3 --- Effect of FK228 on Expression of Different Cyclins in NPC Cell Lines --- p.71 / Chapter 4.7 --- Effect of HDAC Inhibitors on EBV Proteins --- p.73 / Chapter 4.8 --- HDAC Inhibitors Modulated Gene Expression Profile --- p.76 / Chapter 4.8.1 --- SAHA and FK228-Induced Gene Expression Profile --- p.76 / Chapter 4.8.2 --- Validation of Expression Profile of Selected Genes by Real-time RT-PCR --- p.83 / Chapter Chapter 5 --- Discussion --- p.87 / Chapter 5.1 --- Anti-proliferative Effect of SAHA and FK228 on NPC Cell Lines --- p.88 / Chapter 5.2 --- Resistance of SAHA or FK228 in NPC --- p.93 / Chapter 5.3 --- Growth Inhibitory Mechanism of SAHA and FK228 in NPC Cells --- p.94 / Chapter 5.4 --- Induction of Polyploidy Cells in NPC Cell Lines --- p.98 / Chapter 5.5 --- Does EBV play a Role in HDAC Inhibiotrs Induced Growth Arrest in NPC Cell Lines? --- p.99 / Chapter 5.6 --- Transcriptional Signature of SAHA and FK228 in NPC Cell Lines --- p.100 / Chapter 5.7 --- Combining SAHA or FK228 with other Anti-tumor Agents --- p.104 / Chapter 5.8 --- Future Prospectus --- p.105 / Chapter Chapter 6 --- Summary --- p.106 / References --- p.108 / Appendix 1 --- p.120 / Appendix 2 --- p.121
|
Page generated in 0.0526 seconds