• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 21
  • Tagged with
  • 109
  • 109
  • 29
  • 26
  • 26
  • 26
  • 24
  • 24
  • 24
  • 18
  • 14
  • 13
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Roles of Epstein-Barr virus-encoded miR-BART microRNAs in viral infection of nasopharyngeal epithelial cells

Yuen, Kit-san, 阮傑燊 January 2014 (has links)
Epstein-Barr virus (EBV) is one of the most successful human pathogens in the world and establishes a lifelong persistent infection in 95% of adult population worldwide. It is associated with a number of malignancies including Burkett’s lymphoma, Hodgkin’s lymphoma, nasopharyngeal carcinoma(NPC) and gastric carcinoma. EBV was the first virus reported to produce microRNAs (miRNAs) and it encodes 44 mature miRNAs from 2 viral transcripts, BART and BHRF1. The BART transcript is abundantly expressed in all latently infected cells, particularly in epithelial cells. The BART miRNAs (miR-BARTs) were shown to be involved in apoptosis inhibition, immune evasion, metastasis, viral and cellular transcripts regulation. The high expression profile and the diverse functions of miR-BARTs suggest that they may play a critical role in the development of EBV-associated NPC. In order to understand the importance of miR-BARTs in NPC development, in this thesis, I conducted a study on the miR-BARTs function in nasopharyngeal carcinogenesis. In the first part, I characterized the cellular target and function of an abundantly expressed miR-BART in NPC. In the second part, I established a novel recombinant EBV construction system for genetic studies of miR-BARTs in nasopharyngeal epithelial (NP) cells. In the first part of my study, I characterized the cellular target and function of miR-BART3* in NPC. As predicted by bioinformatics, tumor suppressor protein DICE1 was a cellular target of miR-BART3*. The specific targeting between miR-BART3* and DICE1 3’UTR was validated by luciferase assays and the downregulation of both endogenous DICE1 protein and mRNA was observed in EBV+epithelial cells and miR-BART3* expressing cells. In addition, restoration of DICE1 protein expression by inhibition of miR-BART3* was also demonstrated in EBV+epithelial cells. Moreover, miR-BART3* was shown to promote cell proliferation via suppression of DICE1. Analysis of22 human nasopharyngeal(NP)biopsy samples demonstrated the inverse correlation between miR-BART3* and DICE1 expression. Taken together, miR-BART3* downregulates the tumor suppressor DICE1 protein to promote cell proliferation and transformation in NPC. Besides the candidate approach, genetic studies can provide a systematic view of the functions of all miR-BARTsand shed light on the importance of miR-BARTs in NPC under a more physiological condition. At present, bacterial artificial chromosome (BAC) technology is commonly used for recombinant EBV construction. However, the intrinsic disadvantages of BAC prevent its use in NP epithelial cells. Therefore in the second part of my study, I established a novel CRISPR/Cas9-mediated recombinant EBV construction system and constructed a miR-BART deleted recombinant EBV. The CRISPR/Cas9 system was demonstrated to be effective in EBV genome editing and Akata cells were infected by the recovered recombinant mutant virus. Infected Akata cells served as the source for NP cell infection through co-culture. The new CRISPR/Cas9 system have many advantages over the conventional EBV BAC method. My work reported in this thesis not only illustrated the importance of miR-BARTs in NPC, but also provide a new technology platform for further study of miR-BARTs in NP epithelial cells. (An / published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
92

Epstein-barr virus (EBV) infection and STAT3 activation in nasopharyngeal epithelial cells

Zhang, Guitao, 张贵焘 January 2012 (has links)
The etiology of nasopharyngeal carcinoma (NPC) is based on intricate interactions among environmental factors, genetic susceptibility and Epstein-Barr virus (EBV) infection. Information concerning the role of EBV infection, particularly during the early stage of NPC development is poorly understood. Our laboratory has shown that stable infection of EBV could be achieved in immortalized epithelial cell lines which harbor genetic alterations and altered cell signaling pathway. In this study, these cell models were used to elucidate early events involved in EBV infection in premalignant nasopharyngeal epithelial cell models and their implications on development and progression of nasopharyngeal carcinoma. The response of EBV-infected cells to a stromal inflammatory cytokine, interleukin-6 (IL-6), was examined. EBV infection and long-term propagation of EBV-infected nasopharyngeal epithelial cells confer enhanced sensitivity to STAT3 activation induced by IL-6. IL-6-induced STAT3 activation reinforced their malignant properties in nasopharyngeal epithelial cells and may play a role in the development of nasopharyngeal carcinoma. Furthermore, constitutive STAT3 activation was demonstrated to facilitate malignant transformation of EBV-infected premalignant nasopharyngeal epithelial cells to cancer cells, suggesting that EBV infection and STAT3 activation might synergistically promote the development of NPC. This study also provides support for the existence of a positive feedback loop of IL-6/STAT3/LMP in NP460hTert-EBV cells, which enhanced STAT3 activation in EBV-infected cells. Elevated levels of IL-6Rα expression were observed in EBV-infected NP460hTert cells compared with uninfected cells and were largely responsible for the enhanced sensitivity of IL-6-induced STAT3 activation in these cells. High expression level of IL-6Rα could amplify IL-6 signaling in nasopharyngeal epithelial cells to promote growth proliferation in NP460hTert cells and increase the growth rate of xenografted NPC cells in immune-suppressed animals, suggesting that IL-6Rα overexpression may play a role of contributing to the development of nasopharyngeal carcinoma. The serum concentrations of both IL-6 and sIL-6R were also higher in NPC patients than healthy individuals and may have prognostic values to predict clinical outcome and disease progression in NPC patients. In conclusion, these data support the hypothesis that EBV infection under inflammatory environment may activate aberrant gene expressions and cell signaling to facilitate malignant transformation. The inflammatory cytokine, IL-6, may mediate the role of EBV infection in the development of NPC. / published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
93

Quality of life of nasopharyngeal carcinoma patients treated with nasopharyngectomy

Ng, Wai-man, 吳偉民 January 2004 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
94

The transcription regulation of Epstein-Barr virus latent membrane protein gene in nasopharyngeal carcinoma cell line

Tsang, Wai-hung., 曾偉雄. January 1999 (has links)
published_or_final_version / Microbiology / Master / Master of Philosophy
95

The adjustment process of patients suffering from neoplasm of nasopharynx throughout the course of illness: a panel study in Hong Kong

Ma, Joyce Lai-chong., 馬麗莊. January 1995 (has links)
published_or_final_version / Social Work and Social Administration / Doctoral / Doctor of Philosophy
96

Cobalt-60 radiation beam verification in nasopharyngeal carcinoma: a Kenya experience

Kikwai, Richard Malakwen January 2012 (has links)
Thesis (MTech (Radiography))--Cape Peninsula University of Technology, 2012 / Background and purpose The primary aim of this study was to analyse the accuracy and reproducibility of radiation treatment to patients with nasopharyngeal carcinoma at the only tertiary teaching and referral hospital in Kenya. The secondary objective was to review literature on quality assurance procedures that would result to provision of quality radiation treatment to this group of patients. Materials and method During the period May 2011 to March 2012, 35 patients with head and neck cancer comprising of 27 patients with nasopharyngeal carcinoma, 7 with paranasal sinus carcinoma and 1 with lymphoma falling within the enrolment criteria were treated using Equinox cobalt-60 unit with the same beam arrangement and were studied prospectively. Radical radiotherapy was delivered using conventional 2D technique in a routine dose of 60-66Gy to the primary and 50Gy to lymph nodes with additional dose to residual neck nodes. During the period of their treatment, a lateral portal image was taken once weekly. Four film image pairs were obtained per patient with each patient positioned and immobilised in an individualised Orfit thermoplastic mask and a head and neck support. The 4 portal images were compared to a corresponding simulator film taken during simulation planning. Deviations from the varied bony landmarks were measured on the portal images and simulator image from the centre of the radiation beam.
97

Bioinformatics analyses of high-throughput genomic and transcriptomic data from nasopharyngeal carcinoma cell line, xenografts and associated Epstein-Barr virus / CUHK electronic theses & dissertations collection

January 2014 (has links)
This thesis is the construct of a computational system for studying the nasopharyngeal carcinoma (NPC) using high-throughput sequencing data. The system involves several components, including discovery of gene fusion in NPC cell line, construction of Esptein-Barr virus (EBV) genome, and evaluation on contaminated sequencing data alignment approaches. We successfully discovered a gene fusion (UBR5-ZNF423) in a NPC cell line (C666-1) which was verified by lab experiments and found in 8.3% of primary tumors. It was discovered the regulation of this gene affect the growth of cancer cell. We constructed the EBV genome in C666-1. It serves as an important reference for studying this important NPC cell line, which was the only NPC cell line in the world for a long time. We also evaluated three mapping approaches. Two of them are designed to filter out potential mouse contamination reads on human sequencing data, which can originate from NPC human-in-mouse xenografts. We found that special care should always be applied to contaminated data. Although direct mapping can give acceptable results if in most cases, the combined-based approached is suggested. It can effectively reduce false positive variants and maintain good enough numbers of true positive variants. Filtering approach is an alternative to the combined-based approach that can also effectively reduce contamination when memory is not sufficient. / 本論文利用電腦有系統地研究鼻咽癌,當中的數據利用了高通量測序技術來定序。其中章節包括在鼻咽癌胞系中尋找融合基因、組建潛藏於人體可引致鼻咽癌的EB病毒基因組、還有評價幾種可處理受污染序列的序列排列方法。我們成功地在鼻咽癌胞系(C666-1)中發現出一個融合基因(UBR5-ZNF423),並在實驗中確定此成果,其中發現在原發腫瘤中有8.3%的樣本中找出此融合基因。此外,也發現這融合基因調控會影響到癌細胞的生長。C666-1鼻咽癌胞系在過往有一段很長的時間裡,都是全世界唯一的鼻咽癌胞系,因此它有非常重要的參考價值,在此研究,我們組建了在C666-1裡的EB病毒基因組,使它作為研究C666-1的參考樣本。另外,我們評價了三種處理排列的方法,其中兩種的設計能過濾部分人類序列數據當中老鼠基因組的污染,老鼠基因組的污染可以來自於異種移植,即把人類癌細腫瘤移植於老鼠身上種植,我們建議在情況許可下都使用特殊的處理方法而不是直接作序列排列。直接作序列排列數據雖然已有合理的表現,但相比之下組合基因組式序列排列方法能有效減少錯誤肯定的遺傳變異,並同時保留足夠多正確肯定的遺傳變異,所以組合基因組式序列排列方法應在情況許可下都使用它。過濾式序列排列方法也是一種特殊的處理方法,它也能有效減少錯誤肯定的遺傳變異,它對記憶體的需求比組合基因組式序列排列方法少,可在電腦的記憶體不足時使用它。 / Tso, Kai Yuen. / Thesis M.Phil. Chinese University of Hong Kong 2014. / Includes bibliographical references (leaves 112-120). / Abstracts also in Chinese. / Title from PDF title page (viewed on 24, October, 2016). / Detailed summary in vernacular field only.
98

Aberrant activation of notch signaling pathway in nasopharyngeal carcinoma. / 鼻咽癌中異常活化的notch信號通路 / Bi yan ai zhong yi chang huo hua denotch xin hao tong lu

January 2010 (has links)
Man, Cheuk Him. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 219-263). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Figures --- p.xii / List of Tables --- p.xvi / List of Publications --- p.xvii / Chapter Ch.l --- Introduction --- p.1 / Chapter 1.1 --- Aim of study --- p.1 / Chapter 1.2 --- Literature review --- p.3 / Chapter 1.2.1 --- Nasopharyngeal carcinoma (NPC) --- p.3 / Chapter 1.2.1.1 --- Structure and function of nasopharynx --- p.3 / Chapter 1.2.1.2 --- Histopathology of NPC --- p.3 / Chapter 1.2.1.3 --- Epidemiology of NPC --- p.4 / Chapter 1.2.2 --- Etiology of NPC --- p.6 / Chapter 1.2.2.1 --- Genetic factors --- p.6 / Chapter 1.2.2.2 --- Environment factors --- p.13 / Chapter 1.2.2.3 --- Epstein-Barr virus (EBV) infection --- p.14 / Chapter 1.2.3 --- Therapeutic treatment of NPC --- p.24 / Chapter 1.2.3.1 --- Radiotherapy (RT) --- p.24 / Chapter 1.2.3.2 --- Chemotherapy --- p.25 / Chapter 1.2.4 --- Notch signaling pathway --- p.26 / Chapter 1.2.4.1 --- Notch receptors and their ligands --- p.26 / Chapter 1.2.4.2 --- Activation of Notch signaling pathway --- p.29 / Chapter 1.2.4.3 --- Regulators of Notch signaling pathway --- p.32 / Chapter 1.2.4.4 --- Effectors of Notch signaling pathway --- p.32 / Chapter 1.2.5 --- Role of Notch signaling pathway in tumorigenesis --- p.33 / Chapter 1.2.5.1 --- Cell proliferation --- p.34 / Chapter 1.2.5.2 --- Cell survival --- p.35 / Chapter 1.2.5.3 --- Angiogenesis --- p.36 / Chapter 1.2.5.4 --- Cell invasion and metastasis --- p.36 / Chapter 1.2.6 --- Notch and oncogenic virus --- p.37 / Chapter 1.2.7 --- Crosstalk between Notch and other signaling pathways --- p.38 / Chapter 1.2.7.1 --- NFkB signaling pathway --- p.38 / Chapter 1.2.7.2 --- Ras signaling pathway --- p.39 / Chapter 1.2.7.3 --- Wnt signaling pathway --- p.40 / Chapter 1.2.7.4 --- Akt signaling pathway --- p.40 / Chapter 1.2.7.5 --- ErbB2 signaling pathway --- p.41 / Chapter 1.2.8 --- Notch as therapeutic target for cancer --- p.41 / Chapter Ch.2 --- Materials and Methods --- p.45 / Chapter 2.1 --- "Cell lines, xenografts and primary tumors" --- p.45 / Chapter 2.1.1 --- Cell lines --- p.45 / Chapter 2.1.2 --- Xenografts --- p.46 / Chapter 2.1.3 --- Primary tumors --- p.48 / Chapter 2.2 --- Reverse-transcription polymerase chain reaction (RT-PCR) --- p.50 / Chapter 2.2.1 --- Sample preparation for RT-PCR --- p.50 / Chapter 2.2.1.1 --- RNA extraction --- p.50 / Chapter 2.2.1.2 --- Quantitation of total RNA --- p.50 / Chapter 2.2.2 --- Conventional RT-PCR --- p.51 / Chapter 2.2.3 --- Quantitative RT-PCR --- p.51 / Chapter 2.3 --- Western immunoblot --- p.55 / Chapter 2.3.1 --- Protein extraction --- p.55 / Chapter 2.3.2 --- SDS-PAGE and immunoblotting --- p.55 / Chapter 2.4 --- Immunohistochemistry --- p.59 / Chapter 2.5 --- Cloning and plasmid DNA preparation --- p.62 / Chapter 2.5.1 --- Polymerase chain reaction (PCR) and purification of PCR products --- p.62 / Chapter 2.5.2 --- Restriction enzyme double digestion --- p.65 / Chapter 2.5.3 --- Ligation of plasmid and insert sequence --- p.65 / Chapter 2.5.4 --- Bacterial transformation --- p.66 / Chapter 2.5.5 --- Plasmid DNA extraction --- p.66 / Chapter 2.5.6 --- DNA sequencing --- p.67 / Chapter 2.6 --- Transient transfection of NPC cell lines --- p.67 / Chapter 2.7 --- Drug treatment on NPC cell lines --- p.69 / Chapter 2.8 --- Cell proliferation assays --- p.71 / Chapter 2.8.1 --- WST-1 assay --- p.71 / Chapter 2.8.2 --- BrdU assay --- p.71 / Chapter 2.9 --- Flow cytometry analysis --- p.72 / Chapter 2.9.1 --- Sample preparation --- p.72 / Chapter 2.9.2 --- Cell cycle analysis by propidium iodide staining --- p.73 / Chapter 2.9.3 --- Apoptosis analysis by AnnexinV-PI staining --- p.73 / Chapter 2.10 --- Apoptosis analysis by Caspase-3 activity assay --- p.74 / Chapter 2.11 --- RBP-Jk reporter assay --- p.75 / Chapter 2.12 --- NFKB1 reporter assay --- p.77 / Chapter 2.13 --- Dual luciferase reporter assay --- p.77 / Chapter 2.14 --- Expression array --- p.78 / Chapter 2.15 --- Statistical analysis --- p.79 / Chapter Ch.3 --- Characterization of Notch Signaling Molecules in NPC --- p.80 / Chapter 3.1 --- Introduction --- p.80 / Chapter 3.2 --- Results --- p.81 / Chapter 3.2.1 --- "Expression of Notch ligands, receptors, effectors and regulators in NPC cell lines and xenografts" --- p.81 / Chapter 3.2.2 --- "Expression of Notch ligands, receptors, regulators and effectors in NPC primary tumors" --- p.104 / Chapter 3.3 --- Discussion --- p.111 / Chapter 3.3.1 --- Overexpression of Jagl and D114 in NPC --- p.112 / Chapter 3.3.2 --- Overexpression of Notch receptors in NPC --- p.114 / Chapter 3.3.3 --- "Downregulation of Negative regulator, Numb, in NPC" --- p.116 / Chapter 3.3.4 --- Overexpression of Notch effectors in NPC --- p.117 / Chapter 3.4 --- Summary --- p.119 / Chapter Ch.4 --- Mechanisms of Activation of Notch Signaling Pathway in NPC --- p.120 / Chapter 4.1 --- Introduction --- p.120 / Chapter 4.2 --- Results --- p.122 / Chapter 4.2.1 --- EBV mediated Notch activation --- p.122 / Chapter 4.2.1.1 --- No effect of EBERs and EBNA1 on the expression of Notch Components --- p.122 / Chapter 4.2.1.2 --- LMP1 induces expression of Notch components --- p.129 / Chapter 4.2.1.3 --- LMP2A induces expression of Notch components --- p.133 / Chapter 4.2.2 --- Effect of CXCR4 on Notch signaling pathway in C666-1 --- p.137 / Chapter 4.3 --- Discussion --- p.139 / Chapter 4.3.1 --- EBV-mediated induction of Notch components --- p.139 / Chapter 4.3.2 --- Regulation of Notch expression by CXCR4 signaling pathway --- p.142 / Chapter 4.4 --- Summary --- p.145 / Chapter Ch.5 --- Investigation of the Oncogenic Role of Notch3 --- p.146 / Chapter 5.1 --- Introduction --- p.146 / Chapter 5.2 --- Results --- p.148 / Chapter 5.2.1 --- Effect of knockdown Notch 1 by siRNA on the growth of C666-1 --- p.148 / Chapter 5.2.2 --- Effect of knockdown Notch3 by siRNA on the growth of C666-1 --- p.151 / Chapter 5.2.2.1 --- Effect of knockdown Notch3 by siRNA on the RBP-Jk promoter activity of C666-1 --- p.153 / Chapter 5.2.2.2 --- Effect of knockdown Notch3 by siRNA on the proliferation of C666-1 --- p.155 / Chapter 5.2.2.3 --- Effect of knockdown Notch3 by siRNA on cell cycle progression of C666-1 --- p.158 / Chapter 5.2.2.4 --- Effect of knockdown Notch3 by siRNA on resistant to apoptosis in C666-1 --- p.160 / Chapter 5.2.3 --- Investigation of the anti-proliferation effect of therapeutic agents targeting Notch signaling pathway in NPC cells --- p.168 / Chapter 5.2.3.1 --- "Effect of DAPT on the proliferation of HEK293T, C666-1 and HK-1" --- p.168 / Chapter 5.2.3.2 --- Effect of AMD3100 on Notch signaling pathway and proliferation of NPC cells --- p.172 / Chapter 5.2.4 --- Study of downstream targets of Notch3 in NPC cells --- p.178 / Chapter 5.3 --- Discussion --- p.200 / Chapter 5.3.1 --- Oncogenic role of Notch3 in C666-1 --- p.200 / Chapter 5.3.2 --- Potential therapeutic approach in treating NPC via Notch inhibition --- p.206 / Chapter 5.3.2.1 --- "Gamma secretase inhibitor, DAPT" --- p.206 / Chapter 5.3.2.2 --- "CXCR4 antagonist, AMD3100" --- p.207 / Chapter 5.4 --- Summary --- p.209 / Chapter Ch.6 --- General Discussion --- p.210 / Chapter Ch.7 --- Conclusion --- p.217 / Reference --- p.219 / Appendices --- p.263 / Appendix 1 Summary of immunohistochemical staining results on 23 primary NPC samples --- p.264 / Appendix 2 Summary of 581 selected genes from the expression array --- p.265
99

Cancer stem-like cell properties of drug-resistant nasopharyngeal carcinoma cells. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Choi, Pui Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 101-122). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
100

Role of prolyl isomerase PIN1 on tumorigenesis of nasopharyngeal carcinoma. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Xu, Meng. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 112-129). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Page generated in 0.0499 seconds