• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation Native des Systèmes Multiprocesseurs sur Puce à l'aide de la Virtualisation Assistée par le Matériel / Native Simulation of Multiprocessor System-on-Chip using Hardware-Assisted Virtualization

Hamayun, Mian Muhammad 04 July 2013 (has links)
L'intégration de plusieurs processeurs hétérogènes en un seul système sur puce (SoC) est une tendance claire dans les systèmes embarqués. La conception et la vérification de ces systèmes nécessitent des plateformes rapides de simulation, et faciles à construire. Parmi les approches de simulation de logiciels, la simulation native est un bon candidat grâce à l'exécution native de logiciel embarqué sur la machine hôte, ce qui permet des simulations à haute vitesse, sans nécessiter le développement de simulateurs d'instructions. Toutefois, les techniques de simulation natives existantes exécutent le logiciel de simulation dans l'espace de mémoire partagée entre le matériel modélisé et le système d'exploitation hôte. Il en résulte de nombreux problèmes, par exemple les conflits l'espace d'adressage et les chevauchements de mémoire ainsi que l'utilisation des adresses de la machine hôte plutôt des celles des plates-formes matérielles cibles. Cela rend pratiquement impossible la simulation native du code existant fonctionnant sur la plate-forme cible. Pour surmonter ces problèmes, nous proposons l'ajout d'une couche transparente de traduction de l'espace adressage pour séparer l'espace d'adresse cible de celui du simulateur de hôte. Nous exploitons la technologie de virtualisation assistée par matériel (HAV pour Hardware-Assisted Virtualization) à cet effet. Cette technologie est maintenant disponibles sur plupart de processeurs grande public à usage général. Les expériences montrent que cette solution ne dégrade pas la vitesse de simulation native, tout en gardant la possibilité de réaliser l'évaluation des performances du logiciel simulé. La solution proposée est évolutive et flexible et nous fournit les preuves nécessaires pour appuyer nos revendications avec des solutions de simulation multiprocesseurs et hybrides. Nous abordons également la simulation d'exécutables cross- compilés pour les processeurs VLIW (Very Long Instruction Word) en utilisant une technique de traduction binaire statique (SBT) pour généré le code natif. Ainsi il n'est pas nécessaire de faire de traduction à la volée ou d'interprétation des instructions. Cette approche est intéressante dans les situations où le code source n'est pas disponible ou que la plate-forme cible n'est pas supporté par les compilateurs reciblable, ce qui est généralement le cas pour les processeurs VLIW. Les simulateurs générés s'exécutent au-dessus de notre plate-forme basée sur le HAV et modélisent les processeurs de la série C6x de Texas Instruments (TI). Les résultats de simulation des binaires pour VLIW montrent une accélération de deux ordres de grandeur par rapport aux simulateurs précis au cycle près. / Integration of multiple heterogeneous processors into a single System-on-Chip (SoC) is a clear trend in embedded systems. Designing and verifying these systems require high-speed and easy-to-build simulation platforms. Among the software simulation approaches, native simulation is a good candidate since the embedded software is executed natively on the host machine, resulting in high speed simulations and without requiring instruction set simulator development effort. However, existing native simulation techniques execute the simulated software in memory space shared between the modeled hardware and the host operating system. This results in many problems, including address space conflicts and overlaps as well as the use of host machine addresses instead of the target hardware platform ones. This makes it practically impossible to natively simulate legacy code running on the target platform. To overcome these issues, we propose the addition of a transparent address space translation layer to separate the target address space from that of the host simulator. We exploit the Hardware-Assisted Virtualization (HAV) technology for this purpose, which is now readily available on almost all general purpose processors. Experiments show that this solution does not degrade the native simulation speed, while keeping the ability to accomplish software performance evaluation. The proposed solution is scalable as well as flexible and we provide necessary evidence to support our claims with multiprocessor and hybrid simulation solutions. We also address the simulation of cross-compiled Very Long Instruction Word (VLIW) executables, using a Static Binary Translation (SBT) technique to generated native code that does not require run-time translation or interpretation support. This approach is interesting in situations where either the source code is not available or the target platform is not supported by any retargetable compilation framework, which is usually the case for VLIW processors. The generated simulators execute on top of our HAV based platform and model the Texas Instruments (TI) C6x series processors. Simulation results for VLIW binaries show a speed-up of around two orders of magnitude compared to the cycle accurate simulators.
2

Simulation fonctionnelle native pour des systèmes many-cœurs / Functional native simulation techniques for many-core systems

Sarrazin, Guillaume 23 May 2016 (has links)
Le nombre de transistors dans une puce augmente constamment en suivant la conjecture de Moore, qui dit que le nombre de transistors dans une puce double tous les 2 ans. On arrive donc aujourd’hui à des systèmes d’une telle complexité que l’exploration architecturale ou le développement, même parallèle, de la conception de la puce et du code applicatif prend trop de temps. Pour réduire ce temps, la solution généralement admise consiste à développer des plateformes virtuelles reproduisant le comportement de la puce cible. Avoir une haute vitesse de simulation est essentiel pour ces plateformes, notamment pour les systèmes many-cœurs à cause du grand nombre de cœurs à simuler. Nous nous focalisons donc dans cette thèse sur la simulation native, dont le principe est de compiler le code source directement pour l’architecture hôte, offrant ainsi un temps de simulation que l’on peut espérer optimal. Mais un certain nombre de caractéristiques fonctionnelles spécifiques au cœur cible peuvent ne pas être présentes sur le cœur hôte. L’utilisation de l’assistance matérielle à la virtualisation (HAV) comme base pour la simulation native vient renforcer la dépendance de la simulation du cœur cible par rapport aux caractéristiques du cœur hôte. Nous proposons dans ce contexte un moyen de simuler les caractéristiques fonctionnelles spécifiques du cœur cible en simulation native basée sur le HAV. Parmi les caractéristiques propres au cœur cible, l’unité de calcul à virgule flottante est un élément important, bien trop souvent négligé en simulation native conduisant certains calculs à donner des résultats différents entre le cœur cible et le cœur hôte. Nous nous restreignons au cas de la simulation compilée et nous proposons une méthodologie permettant de simuler correctement les opérations de calcul à virgule flottante. Finalement la simulation native pose des problèmes de passage à l’échelle. Des problèmes de découplage temporel amènent à simuler inutilement certaines instructions lors de procédures de synchronisation entre des tâches s’exécutant sur les cœurs cibles, conduisant à une réduction de la vitesse de simulation. Nous proposons des solutions pour permettre un meilleur passage à l’échelle de la simulation native. / The number of transistors in one chip is increasing following Moore’s conjecture which says that the number of transistors per chip doubles every two years. Current systems are so complex that chip design and specific software development for one chip take too much time even if software development is done in parallel with the design of the hardware architecture, often because of system integration issues. To help reducing this time, the general solution consists of using virtual platforms to reproduce the behavior of the target chip. The simulation speed of these platforms is a major issue, especially for many-core systems in which the number of programmable cores is really high. We focus in this thesis on native simulation. Its principle is to compile source code directly for the host architecture to allow very fast simulation, at the cost of requiring "equivalent" features on the target and host cores.However, some target core specific features can be missing in the host core. Hardware Assisted Virtualization (HAV) is used to ease native simulation but it reinforces the dependency of the target chip simulation regarding the host core capabilities. In this context, we propose a solution to simulate the target core functional specific features with HAV based native simulation.Among target core features, the floating point unit is an important element which is neglected in native simulation leading to potential functional differences between target and host computation results. We restrict our study to the compiled simulation technique and we propose a methodology ensuring to accurately simulate floating point computations while still keeping a good simulation speed.Finally, native simulation has a scalability issue. Time decoupling problems generate unnecessary code simulation during synchronisation protocols between threads executed on the target cores, leading to an important decrease of simulation speed when the number of cores grows. We address this problem and propose solutions to allow a better scalability for native simulation.

Page generated in 0.0905 seconds