• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 59
  • 36
  • 7
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 192
  • 96
  • 61
  • 58
  • 52
  • 50
  • 44
  • 33
  • 32
  • 30
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Understanding metformin mediated natural killer cell activation in head and neck squamous cell carcinoma

Crist, McKenzie 25 May 2023 (has links)
No description available.
62

The Characterization of Zebrafish Natural Killer Cells and Their Role in Immunological Memory

Muire, Preeti Judith 08 December 2017 (has links)
Rag1-/- mutant zebrafish lack lymphocytes and were used to study the basis of acquired protective immunity in the absence of lymphocytes to the intracellular bacterium Edwardsiella ictaluri. This study morphologically identified and quantified lymphocyte like cells (LLCs) present in the liver, kidney and spleen of these fish. LLCs included Natural Killer (NK) cells and non-specific cytotoxic cells (NCCs) and were discriminated by size, and by the presence of cytoplasmic granules. The antibodies anti-NITR9, anti-NCCRP-1 (5C6) and anti-MPEG-1 were used to evaluate these cell populations by flow cytometry. Gene expression profiles in these tissues were evaluated after the Rag1-/- mutants were intra coelomically injected with the toll like receptor (TLR)-2 ligand, β glucan, TLR3 ligand, Poly I:C, or TLR 7/8 ligand, R848. The genes interferon y (infγ), expressed by activated NK cells and macrophages, tumor necrosis factor α (tnfα), expressed by activated macrophages, myxovirus resistance (mx) expressed by cells induced by IFNα, T-cell transcription factor (t-bet) expressed by NK cells and novel immune type-receptor 9 (nitr-9) expressed by NK cells were evaluated. The TLR ligands induced different patterns of expression and stimulated both macrophages and NK cells. Then fish were vaccinated with an attenuated mutant of E. ictaluri (RE33®) with or without the TLR ligands then challenged with WT E. ictaluri to evaluate protection. RE33® alone and each TLR ligand alone provided protection. Coministration of β glucan and RE33® or R848 and RE33® resulted in survival higher than RE33® alone showing an adjuvant effect. Tissue specific gene expression of ifnγ, t-bet, nitr9, NK cell lysin a (nkla), nklb, nklc and nkld were correlated to protection. The final component of this study was the development of tools to discriminate NK cell populations and evaluate the contribution of macrophages. Rag1-/- zebrafish were modified to express cherry red in lymphocyte like cells using the Lymphocyte specific tyrosine kinase (lck) promotor. Also, rag1-/- zebrafish were modified so that the gene encoding the proto-oncogene serine/threonine-protein kinase that is involved in macrophage training (raf1) is disrupted. This study indicated that the acquired protection in the absence of lymphocytes likely involves NK cells with possible contribution by macrophages.
63

Activation and Expansion of Natural Killer Cells for Cancer Immunotherapy With EX21 Exosomes

Khederzadeh, Sara 01 January 2017 (has links)
In the field of cancer immunotherapy, NK cells are recognized for their ability to provide a form of innate immunity against tumor cells. However, the average abundance of NK cells in the blood can be as low as 5% of the total lymphocyte population. As a result, it has been a focus to find novel therapies to expand NK cells in vitro while subsequently enhancing the cytotoxicity of these cells. Previously-defined methods include the minimal expansion of NK cells with high levels of cytokines such as IL-2 and IL-15, as well as co-culturing NK cells with feeder cell populations that are genetically modified to express NK-stimulating factors. Another method involves the use of artificially-derived plasma membrane nanoparticles (PM21) that express membrane-bound IL-21 (mb21) to successfully expand NK cells by a factor of 103 in 14 days. Exosomes, which are cell-derived vesicles naturally secreted by cancer cells, may reveal a novel way to expand NK cells and enhance their cytotoxicity by taking advantage of the exchange of genetic information within the tumor microenvironment. To test this hypothesis, NK cells have been cultured with varying concentrations of exosomes derived from modified K562-mb21-41BBl (a chronic myelogenous leukemia cell line) and shown to achieve 200-fold expansion of NK cells from other PBMCs in 14 days, a growth comparable to that of PM-21 particles. In vitro assays as well as co-culturing with various tumor cell lines will determine the cytotoxicity of these expanded cells. Potentially, exosomes may be applied as an in vivo therapy for NK cell expansion.
64

The Function and Homeostasis of Natural Killer Cells in Aging

Shehata, Hesham M., Ph.D. January 2015 (has links)
No description available.
65

Moving in for the Kill: Natural Killer Cell Localization in Regulation of Humoral Immunity

Moran, Michael 28 June 2016 (has links)
No description available.
66

Cytokine Regulation of Natural Killer Cell Activation and Homeostasis

Cooper, Megan Anne 02 July 2002 (has links)
No description available.
67

Studies of human natural killer cell development

Freud, Aharon G. 21 September 2006 (has links)
No description available.
68

The role of natural killer cells in the response to anti-tumor antibodies

Roda, Julie M. 26 February 2007 (has links)
No description available.
69

The stage-specific effects of IL-1β on human natural killer cell development

Hughes, Tiffany L. 20 July 2011 (has links)
No description available.
70

TGFβ Causes Postoperative Natural Killer Cell Paralysis Through mTOR Inhibition

Market, Marisa Rae 04 September 2020 (has links)
Background: Life-prolonging tumour removal surgery is associated with increased metastasis and disease recurrence. Natural Killer (NK) cells are critical for the anti-tumour immune response. Postoperatively, NK cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed and this dysfunction has been linked to increased metastases/poor patient outcomes. NK cell activity depends on the integration of signals through receptors and can be modulated by soluble factors, including transforming growth factor- beta (TGFβ). The postoperative period is characterized by the expansion of myeloid-derived suppressor cells (sxMDSCs), which inhibit NK cell effector functions. I hypothesize that impaired NK cell IFNγ production is due to altered signaling pathways caused by sxMDSC-derived TGFβ. Methods: Postoperative changes in NK cell receptor expression, receptor-dependent phosphorylation of downstream targets, and rIL-2/12-stimulated IFNγ production were assessed using newly developed whole blood assays utilizing peripheral blood samples from cancer surgery patients. Isolated healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma or isolated sxMDSCs and NK cell phenotype and function were assessed. NK cells were also cultured with plasma in the presence/absence of a TGFβ blocking monoclonal antibody (mAb) or a TGFβ RI small molecule inhibitor (smi). Single-cell RNA-sequencing was performed on six colorectal cancer surgery patients at baseline and on POD1. S6 phosphorylation was used as a proxy for mammalian target of rapamycin complex (mTORC) 1 activity to investigate the mechanism of TGFβ-mediated NK cell dysfunction. Results: Intracellular NK cell IFNγ, activating receptors CD132 (IL-2R), CD212 (IL-12R), NKG2D, and DNAM-1, and the phosphorylation of downstream targets STAT5, STAT4, p38 MAPK, and S6 were significantly reduced on POD1. TGFβ was increased in patient plasma on POD1. The dysfunctional phenotype could be phenocopied in healthy NK cells through the addition of rTGFβ1 or by incubation with POD1 plasma. This dysfunctional phenotype could be prevented with the addition of an anti-TGFβ mAb or a TGFβ RI smi in culture. RNA-sequencing revealed a reduction in transcripts associated with mTOR effector functions, suggesting an impairment in mTOR. S6 phosphorylation was maintained with the addition of TGFβ-specific therapies. The hyporesponsive NK cell phenotype was reproduced upon culture of healthy NK cells with sxMDSCs and sxMDSCs were shown to produce soluble TGFβ in culture. Conclusion: Surgically stressed NK cells display a dysfunctional phenotype, which could be prevented in vitro through the addition of TGFβ-specific blocking therapies. sxMDSCs produced TGFβ and co- incubation induced dysfunction in healthy NK cells. The recovery of impaired S6 phosphorylation with TGFβ-specific therapies suggests that TGFβ is inducing NK cell dysfunction via inhibition of mTORC1 activity. The perioperative period of immunosuppression presents a window of opportunity for novel therapeutics to prevent metastases and cancer recurrence among cancer surgery patients.

Page generated in 0.0378 seconds