Spelling suggestions: "subject:"batural entilation"" "subject:"batural centilation""
11 |
Slope flows and thermal comfort for hospital natural ventilationWu, Jiayi, 吴佳诣 January 2010 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
12 |
An Exploration of the Natural Ventilation Strategies At the World Trade Center, AmsterdamWest, Aaron William 13 November 2000 (has links)
The push to design environmentally conscious and sustainable buildings has surged over the past twenty year, thus leading to the development of new methods for harnessing the natural elements of the earth. In recent years the international firm of Kohn, Pederson and Fox has been a champion of the sustainability movement. In fact many of the newer passive ventilation strategies under development can be seen in Kohn, Pedersen Fox International (KPFI) current commission for the World Trade Center (WTC) currently under construction in Amsterdam, Netherlands. This multi-million square foot complex has been designed to service the growing needs of Europe's free market economy and the fledgling European Union (EU). The complex is a series of five towers with connecting multi-storied atriums in the interstitial spaces. While the towers are actively heated and cooled using modern energy efficient systems the atrium areas are ventilated using an innovative passive system. This passive system relies on turbulence and negative pressure along the roof system to draw air through the space and positive pressure (due to wind driven forces) at the inlets located above the ground level doors to bring air into the atrium. The primary concept behind this strategy is that the difference between the positive and negative pressure zones will induce a convective current within the atrium space and there by create a continuous air-change system. The intent of this thesis is to analyze and report on the findings of the wind tunnel tests done on scale models of the complex and, propose alternative ideas to strengthen the current design. / Master of Science
|
13 |
Incorporation of Natural Ventilation in a Commercial HVAC System Using Temperature as a Comfort ParameterPENDSE, RAHUL S. 27 May 2004 (has links)
No description available.
|
14 |
A decision-support framework for design of natural ventilation in non-residential buildingsZhao, Ying 03 May 2007 (has links)
This study develops a decision-support framework assisting the design of non-residential buildings with natural ventilation. The framework is composed of decision modules with input, analysis algorithms and output of natural ventilation design. The framework covers ventilation with natural driving force and mechanical-assisted ventilation. The framework has two major assessment levels: feasibility assessment and comparison of alternative natural ventilation approaches. The feasibility assessment modules assess the potential of the site with the design proposition for natural ventilation in terms of wind, temperature, humidity, noise and pollution conditions. All of the possible natural ventilation approaches and system designs are assessed by first applying constraints functions to each of the alternatives. Then the comparison of alternative approaches to natural ventilation continues by assessing the critical performance mandates that include energy savings, thermal comfort, acoustic control, indoor air quality and cost. Approaches are finally ranked based on their performance. / Ph. D.
|
15 |
Retrofitted natural ventilation systems for a lightweight office buildingKhatami, Narguess January 2014 (has links)
This study aimed to develop retrofitted natural ventilation options and control strategies for existing office buildings to improve thermal comfort, indoor air quality and energy consumption. For this purpose, a typical office building was selected in order to identify opportunities and constraints when implementing such strategies. Actual performance of the case study building was evaluated by conducting quantitative and qualitative field measurements including physical measurements and questionnaire surveys. Based on the actual building performance, a combination of Dynamic Thermal Simulation (using IES) and Computational Fluid Dynamics (using PHOENICS) models were built to develop appropriate natural ventilation options and control strategies to find a balance between energy consumption, indoor air quality, and thermal comfort. Several retrofitted options and control strategies were proposed and the best retrofitted natural ventilation options and control strategies were installed in the case study building. Post occupancy evaluation of the case study building after the interventions was also carried out by conducting physical measurements and questionnaire surveys. Post refurbishment measurements revealed that energy consumption and risk of overheating in the refurbished building were reduced by 9% and 80% respectively. The risk of unacceptable indoor air quality was also reduced by 60% in densely occupied zones of the building. The results of questionnaire surveys also revealed that the percentage of dissatisfied occupants reduced by 80% after intervention. Two new products including a Motorized ceiling tile and NVlogIQ , a natural ventilation wall controller, were also developed based on the results of this study.
|
16 |
Using large eddy simulation to model buoyancy-driven natural ventilationDurrani, Faisal January 2013 (has links)
The use of Large Eddy Simulation (LES) for modelling air flows in buildings is a growing area of Computational Fluid Dynamics (CFD). Compared to traditional CFD techniques, LES provides a more detailed approach to modelling turbulence in air. This offers the potential for more accurate modelling of low energy natural ventilation which is notoriously difficult to model using traditional CFD. Currently, very little is known about the performance of LES for modelling natural ventilation, and its computational intensity makes its practical use on desk top computers prohibitive. The objective of this work was to apply LES to a variety of natural ventilation strategies and to compile guidelines for practitioners on its performance, including the trade-off between accuracy and cost.
|
17 |
The feasibility of natural ventilation in healthcare buildingsAdamu, Zulfikar A. January 2013 (has links)
Wards occupy significant proportions of hospital floor areas and due to their constant use, represent a worthwhile focus of study. Single-bed wards are specifically of interest owing to the isolation aspect they bring to infection control, including airborne pathogens, but threats posed by airborne pandemics and family-involvement in hospital care means cross-infection is still a potential problem. In its natural mode, ventilation driven by combined wind and buoyancy forces can lead to energy savings and achieve thermal comfort and high air change rates through secure openings. These are advantageous for controlling indoor airborne pathogens and external air and noise pollution. However, there is lack of detailed evidence and guidance is needed to gain optimum performance from available natural ventilation systems. This research is a proof of concept investigation into the feasibility and impact of natural ventilation systems targeting airflow rates, thermal comfort, heating energy and control of pathogenic bio-aerosols in hospital wards. In particular, it provides insights into the optimal areas of vent openings which could satisfy the complex three-pronged criteria of contaminant dilution, low heating energy and acceptable thermal comfort for occupants in a naturally ventilated single bed ward. The main aim of this thesis is the structured study of four systems categorised into three groups: Simple Natural Ventilation (SNV) in which single and dual-openings are used on the same external wall; Advanced Natural Ventilation (ANV) which is an emerging concept; and finally Natural Personalised Ventilation (NPV) which is an entirely new concept borne out of the limitations of previous systems and gaps in literature. The focus of this research is in the exploratory study of the weaknesses and potentials of the four systems, based on multi-criteria performances metrics within three architecturally distinct single-bed ward designs. In contributing to the body of existing knowledge, this thesis provides a better understanding of the performances of three existing systems while presenting the new NPV system. The analysis is based on dynamic thermal modelling and computational fluid dynamics and in the case of the NPV system, salt-bath experiments for validation and visualisation of transient flows. In all cases, wards were assumed to be free of mechanical ventilation systems that might influence the natural flow of air. The thesis meets three major objectives which have resulted in the following contributions to current knowledge: An understanding of the limitations and potentials of same-side openings, especially why and how dual-openings can be useful when retrofitted into existing wards. Detailed analysis of bulk airflow, thermal comfort, heating energy and room air distribution achievable from existing SNV and ANV systems, including insights to acceptable trickle ventilation rates, which will be particular useful in meeting minimum dilution and energy requirements in winter. This also includes qualitative predictions of the airflow pattern and direction obtainable from both systems. The innovation and study of a new natural ventilation system called Natural Personalised Ventilation (NPV) which provides fresh air directly over a patient s bed, creating a mixing regime in the space and evaluation of its comfort and energy performances. A low-energy solution for airborne infection control in clinical spaces is demonstrated by achieving buoyancy-driven mixing ventilation via the NPV system, and a derivative called ceiling-based natural ventilation (CBNV) is shown. A comparative analysis of four unique natural ventilation strategies including their performance rankings for airflow rates, thermal comfort, energy consumption and contaminant dilution or removal using an existing single-bed ward design as case study. Development of design and operational recommendations for future guidelines on utilising natural ventilation in single-bed wards either for refurbishment or for proposed designs. These contributions can be extended to other clinical and non-clinical spaces which are suitable to be naturally ventilated including treatment rooms, office spaces and waiting areas. The findings signify that natural ventilation is not only feasible for ward spaces but that there is opportunity for innovation in its application through further research. Future work could focus on related aspects like: impacts of fan-assisted ventilation for a hybrid flow regime; pre-heating of supply air; integration with passive heat recovery systems as well the use of full-scale experiments to fine-tune and validate findings.
|
18 |
Evaluating and enhancing design for natural ventilation in walk-up public housing blocks in the Egyptian desert climatic design regionOsman, Medhat January 2011 (has links)
This work is concerned with evaluating and studying the possibilities of enhancing natural ventilation performance and its use as a passive cooling strategy in walk-up public housing blocks within the Egyptian desert climatic region. This research attempts to maximize the benefits from the vast investments made in housing projects in Egypt through providing thermally comfortable housing prototypes that could use by contrast less energy for cooling purposes. This is considered essential in the light of the current concerns about energy all over the world. Egypt was devided to seven different climatic regions by the Egyptian organization for energy conservation and planning. The Egyptian desert climatic region, which was chosen as the research context, is the largest climatic region of Egypt. Most of the Egyptian new cities that accommodate the majority of the recent public housing projects are located within this desert climatic region that represents the typical hot arid climate characteristics. Nationally, the problem of the misuse of the housing prototyping was spotted. According to previous researchers, the same basic prototypical designs are being built all over the country without giving enough consideration to the actual effects of different climates and the diversity in the residents social needs. Regionally, within the Egyptian desert climatic region, the harsh climatic conditions rate the problem of achieving thermal comfort within these housing prototypes as the most urgent problem that needs to be examined in depth. A pilot study that used observation and monitoring methods was conducted in the New Al-Minya city (The representative city of the desert climatic design region) in order to closely investigate this problem and identify its dimensions. The results confirmed thermal discomfort conditions of the housing prototypes built there, especially during the hot summer period. The passive design strategies analysis of the climatic context indicated that night purge ventilation is the most effective passive strategy that could enhance thermal comfort. These results go along with the rule of natural ventilation in reducing the used energy for cooling and the actually massive national income spent on these housing prototypes encourage this work so to concentrate on natural ventilation. Different studies using multi-approaches research techniques were employed in order to achieve the main aim of the research. These techniques included; literature review, monitoring, questionnaire and computer simulation.A critical literature review was conducted including; the physical science of natural ventilation, its strategic design as well as the design measures that control natural ventilation and the airflow in; the macro, intermediate and micro design levels. The results of the investigations were discussed and interpreted in the light of this review. A representative case study was chosen for the study. The natural ventilation performance in the case study was quantitatively and qualitatively evaluated through conducting field objective and subjective assessment respectively. In evaluation study, the thermal performance of the case study under different ventilation scenarios was monitored, the airflow inside it was simulated using CFD (computational fluid dynamics) software “FloVent” and a sample of residents were questioned. This study identified many problems associated natural ventilation uses and indicated its poor performance within the case study. A number of design measures were formulated based on the literature review and considering the evaluation study results along with the research context nature. The proposed natural ventilation design measures were applied to the case studies and their effectiveness in terms of enhancing the natural ventilation performance was quantified using “FloVent”. Results reported that the proposed natural ventilation design measures could significantly enhance the natural ventilation performance inside the case study quantitatively and qualitatively. This in turn maximizes the potential of providing thermal comfort by using both natural ventilation strategies; comfort ventilation and night purge ventilation. However, all the applied measures could not achieve neither an acceptable airspeed at any of the case study spaces nor a good airflow circulation at some of its spaces. It can be concluded that the current design of the case study can not achieve quality airflow without the use of the mechanical assisted ventilation. In general, it seems very difficult to optimize the air velocity within all spaces in a very dense multi-space design like this case study. A new design that considers natural ventilation and its drivers has to be introduced.
|
19 |
Wind- Chimney (Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation)Tavakolinia, Fereshteh 01 December 2011 (has links)
WIND-CHIMNEY
Integrating the principles of a wind-catcher and a solar chimney to provide natural ventilation
Fereshteh Tavakolinia
Abstract
This paper suggests using a wind-catcher integrated with a solar-chimney in a single story building so that the resident might benefit from natural ventilation, a passive cooling system, and heating strategies; it would also help to decrease energy use, CO2 emissions, and pollution. This system is able to remove undesirable interior heat pollution from a building and provide thermal comfort for the occupant.The present study introduces the use of a solar-chimney with an underground air channel combined with a wind-catcher, all as part of one device. Both the wind-catcher and solar chimney concepts used for improving a room’s natural ventilation are individually and analytically studied. This paper shows that the solar-chimney can be completely used to control and improve the underground cooling system during the day without any electricity. With a proper design, the solar-chimney can provide a thermally comfortable indoor environment for many hours during hot summers. The end product of this thesis research is a natural ventilation system and techniques that improve air quality and thermal comfort levels in a single story building. The proposed wind-chimney could eventually be designed for use in commercial, retail, and multi-story buildings.
|
20 |
Predicting wind driven cross ventilation in buildings with small openingsLo, Liang Chung James 13 November 2012 (has links)
Designing wind driven cross ventilation for a building is challenging due to the dynamic characteristics of wind. While numerous studies have studied various aspects of cross ventilation, few have had an opportunity to examine the topic with a holistic approach utilizing multiple research techniques. Thus, this dissertation combined three different investigation methods: wind tunnel analysis, full scale experiments and computational fluid dynamics (CFD) to examine the physics of wind driven cross ventilation.
Following the systematic approaches of the three methods, this study first conducted full scale measurements of wind properties, façade pressures, air flow rates through small window openings, and tracer gas concentrations in a multi-zone test house. Secondly, a scaled model of the test house was studied in a boundary layer wind tunnel (BLWT) for its façade pressures and ventilation rate under various wind incident angles. Finally, a CFD model of the test house was simulated under various constraints to determine the factors which affect indoor air distribution during wind driven cross ventilation events.
The full scale experimental results showed a strong correlation between the cross ventilation rate and the wind velocity component normal to the inlet openings. This correlation suggested that the cross ventilation flow rate could be estimated from wind conditions alone. A closer examination of the wind characteristics also revealed that the cyclical pattern of changing wind direction could be impacted by obstructions which are kilometers upwind, suggesting that distant landscapes could have an impact on cross ventilation flows.
The combination of CFD and full scale measurements also showed that local heat sources can generate significant buoyancy driven flow and affect indoor mixing during wind-driven cross ventilation scenarios. Experimentally validated parametric CFD analyses demonstrated the effect of interior heat loads in driving internal airflow, and suggest that a small source (35W/m2) can increase the indoor mixing from less than 1 ACH to 8 ACH between indoor spaces.
Finally, the wind tunnel and CFD coupled analysis was found to predict the cross ventilation flow which was also validated against the full scaled measurements. The prediction, which may only be applicable to similar building types with small openings, showed significant agreement that such method has potential as an innovative design tool for natural ventilation in buildings. / text
|
Page generated in 0.0999 seconds