• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 324
  • 71
  • 54
  • 16
  • 10
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1042
  • 1042
  • 223
  • 189
  • 81
  • 77
  • 73
  • 71
  • 70
  • 69
  • 67
  • 67
  • 67
  • 62
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Investigation of a railplug ignition system for lean-burn large-bore natural gas engines

Gao, Hongxun 28 August 2008 (has links)
Not available / text
232

Gas to power: enhancing and optimizing the domestic gas supply obligation for improved power generation and supply in Nigeria

Shodipo, Janet Oluwadunni 10 September 2015 (has links)
This thesis examined the Nigerian Domestic Gas Supply Obligation (DGSO), a policy formulated to enhance domestic natural gas supply for the improvement of electric power generation and supply in Nigeria. Using the theories of property and energy security, the thesis established legal justification for the formulation of the DGSO. Also, comparisons were drawn from countries, such as Indonesia, Western Australia and Egypt, which implemented policies similar to the DGSO. Challenges found to confront the successful implementation of the DGSO ranged from gas producers’ contractual commitments to non-existent comprehensive and pragmatic legal framework for the DGSO. The thesis concluded that with cost-reflective natural gas and electricity pricing, investment incentives and stability, adequate and secured infrastructure, effective implementation and monitoring institutions, backed up by a clear-cut regulatory framework and a strong-willed government, the DGSO could still realize its objectives of contributing immensely to the improvement of power generation and supply in Nigeria. / October 2015
233

Modeling and forecasting long-term natural gas (NG) consumption in Iran, using particle swarm optimization (PSO)

Kamrani, Ebrahim January 2010 (has links)
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.
234

Futures risk premia and price dynamics in energy industry

Dinçerler, Cantekin 09 March 2011 (has links)
Not available / text
235

Elemental and Isotope Geochemistry of Appalachian Fluids: Constraints on Basin-Scale Brine Migration, Water-Rock Reactions, Microbial Processes, and Natural Gas Generation

Osborn, Stephen January 2010 (has links)
This study utilizes new geochemical analyses of fluids (formation water and gas) collected predominately from Devonian organic-rich shales and reservoir sandstones from the northern Appalachian Basin margin to investigate basin scale hydrologic processes, water-rock reactions, microbial activity, and natural gas generation. Elemental and isotopic composition of co-produced formation waters and natural gas show that the majority of methane in Devonian organic-rich shales and reservoir sandstones is thermogenic in origin with localized accumulations of microbial gas. Microbial methanogenesis appears to be primarily limited by redox buffered conditions favoring microbial sulfate reduction. Thermal maturity (bioavailability) of shale organic matter and the paucity of formation waters may also explain the lack of extensive microbial methane accumulations. Iodine and strontium isotopes, coupled to elemental chemistry demonstrate basin scale fluid flow and clay mineral diagenesis. Evidence for this is based on anomalously high ¹²⁹I/I values sourced from uranium deposits (fissiogenic production of ¹²⁹I) at the structural front of the Appalachian Basin. Radiogenic ⁸⁷Sr/⁸⁶Sr (up to 0.7220), and depleted boron and potassium concentrations support smectite clay diagenesis at temperatures greater than 120 °C. The development of fissiogenic ¹²⁹I as a tracer of basin scale fluid flow is a novel application of iodine isotopes provided that the sources of cosmogenic and anthropogenic ¹²⁹I are reasonably well constrained. The anomalously high ¹²⁹I/I in Appalachian Basin brines may be alternatively explained by microbial fractionation based on a correlation with decreasing δ¹³C-DIC values and decreasing sulfate concentrations in the range of sulfate reduction. These results demonstrate that the microbial fractionation of iodine isotopes may be possible and an important consideration when interpreting ¹²⁹I/I, regardless of the source of ¹²⁹I. Results from this study have important implications for understanding the controls on and origins of natural gas production in sedimentary basins; tectonically and topographically driven basin scale fluid flow, including diagenetically induced waterrock reactions and mineral ore deposition related to orogenesis; and an improvement of the use of iodine isotopes for understanding large scale fluid flow, and possibly its use as a tracer of organic matter diagenesis and the distribution of radionuclides in the environment.
236

ELASTICITY OF DEMAND FOR NATURAL GAS IN WESTERN AND CENTRAL CANADA

Shooshtari, Milad 01 April 2014 (has links)
In this paper, we used the Autoregressive Distributed Lag (ARDL) model and the bounds test approach to estimate the elasticity of demand for natural gas in Western and Central Canada. The best model specification selected by Schwarz Information Criterion (SIC) for each province suggests that there exist long-run relationships between the dependent variable and independent variables for all provinces, except Ontario. Consumption per capita in these provinces can be explained by natural gas prices, electricity prices, income, and heating degree days (a measurement for the weather factor) in levels for the selected specification. The results show that natural gas demand is very inelastic with respect to natural gas prices and also with respect to heating degree days.
237

Experimental Studies on Iron-Based Catalytic Combustion of Natural Gas

Pan, Kang January 2013 (has links)
Catalytic combustion is an efficient method to reduce pollutant emissions produced by a variety of fuels. In this thesis, the use of iron pentacarbonyl (Fe(CO)5) as a catalyst precursor in the combustion of natural gas is experimentally studied. The counter-flow diffusion flame burner is employed as the experimental apparatus. The products of combustion are analyzed by using a Gas Chromatograph (GC) to quantitate the effects of adding the catalyst. The experimental setup is such that a mixture of methane (CH4) and nitrogen (N2) is fed from the bottom burner while a mixture of oxygen (O2) and air is supplied from the top burner. The combustion of natural gas without catalyst is first characterized. The oxidizer and fuel flow parameters are set up so that a stable, flat blue flame is formed close to the centre plane between the two burners upon ignition. The experimental results agree with the literature data and the numerical predictions from CHEMKIN software. To investigate and evaluate the performance of iron-containing catalysts on emission reduction, a small amount of separated nitrogen flow is used to carry iron pentacarbonyl into the flame through the central port of the fuel-side burner. Catalytic combustion produces an orange flame. Compared with the non-catalytic combustion data, it is found that carbon monoxide (CO) and soot precursor acetylene (C2H2) are reduced by 80% to 95% when 7453ppm iron pentacarbonyl is added.
238

Towards effective development of Nigeria’s natural gas: lessons from Alberta

Badejo, Ifueko Unknown Date
No description available.
239

Minimum effluent process for pulp mill

Long, Xiaoping 12 1900 (has links)
No description available.
240

Mobile Sensors: Assessment of Fugitive Methane Emissions from Near and Far-Field Sources

Foster-Wittig, Tierney January 2015 (has links)
<p>The primary focus of this dissertation is on the assessment of fugitive methane emissions from near and far-field sources. Methane is the second most prevalent greenhouse gas (GHG) emitted in the United States from anthropogenic activities. Due to measurement and model limitations, there is not an accurate assessment of how much methane in the atmosphere is due to anthropogenic sources. This dissertation focuses on measuring the methane emissions from two of the three largest anthropogenic sources -- landfills and natural gas systems. All measurements are made with a single fixed or single mobile sensor. Methods are developed to assess the source strength for both near (i.e. natural gas) and far-field (i.e. landfill) sources using either the fixed or mobile sensor. </p><p> </p><p>For far-field measurements, a standardized version of a mobile tracer correlation measurement method was developed and used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. A total of 1876 mobile tracer correlation measurement transects were attempted over 131 field sampling days. </p><p>Transects were analyzed using signal to noise ratio, plume correlation, and emission rate difference method quality indicators. The application of the method quality indicators yield 456 transects (33\%) that pass data acceptance criteria. </p><p>For near-field sources, techniques are developed for 1) fixed sensors sampling through time downwind of a source and 2) mobile sensors passing across plumes downwind of a source. For the fixed sensor, the lateral plume geometry is reconstructed from the fluctuating wind direction using a derived relationship between the wind direction and crosswind plume position. The crosswind plume spread is estimated with two different methods (modeled and observed), and subsequently used a Gaussian plume inversion to estimate the source strengths. For the fixed sensor, the sensor takes measurements for about 20 minutes and we are able to reconstruct the ensemble average of the plume. </p><p>For the mobile sensor, the vehicle drives through the plume in the crosswind direction. </p><p>The measurements show the lateral plume geometry of an instantaneous plume. The instantaneous plume has a narrowed Gaussian structure. </p><p>Two techniques are tested using data from controlled methane release experiments; these two techniques are 1) linear-squares and 2) a probabilistic approach. For the probabilistic approach, Bayesian inference tools are applied and special attention is paid to the relevant likelihood functions for both short time averaged concentrations from a single fixed sensor and spatial transects of instantaneous concentration measurements from a mobile sensor. The two techniques are also tested on measurements downwind of multiple natural gas production facilities in Wyoming for the fixed sensor and in Colorado for the moving sensor. The results for both the fixed and mobile techniques show promise for use with gas sensors on industry work trucks, opportunistically providing surveillance over a region of well pads.</p> / Dissertation

Page generated in 0.0853 seconds