Spelling suggestions: "subject:"naturalistic driving study"" "subject:"naturalistics driving study""
11 |
Lane Change Prediction in the Urban AreaGriesbach, Karoline 18 July 2019 (has links)
The development of Advanced Driver Assistance Systems and autonomous driving is one of the main research fields in the area of vehicle development today. Initially the research in this area focused on analyzing and predicting driving maneuvers on highways. Nowadays, a vast amount of research focuses on urban areas as well. Driving maneuvers in urban areas are more complex and therefore more difficult to predict than driving maneuvers on highways. The goals of predicting and understanding driving maneuvers are to reduce accidents, to improve traffic density, and to develop reliable algorithms for autonomous driving. Driving behavior during different driving maneuvers such as turning at intersections, emergency braking or lane changes are analyzed.
This thesis focuses on the driving behavior around lane changes and thus the prediction of lane changes in the urban area is applied with an Echo State Network. First, existing methods with a special focus on input variables and results were evaluated to derive input variables with regard to lane change and no lane change sequences. The data for this first analyses were obtained from a naturalistic driving study. Based on theses results the final set of variables (steering angle, turn signal and gazes to the left and right) was chosen for further computations.
The parameters of the Echo State Network were then optimized using the data of the naturalistic driving study and the final set of variables. Finally, left and right lane changes were predicted. Furthermore, the Echo State Network was compared to a feedforward neural network. The Echo State Network could predict left and right lane changes more successful than the feedforward neural network. / Fahrerassistenzsysteme und Algorithmen zum autonomen Fahren stellen ein aktuelles Forschungsfeld im Bereich der Fahrzeugentwicklung dar. Am Anfang wurden vor allem Fahrmanöver auf der Autobahn analysiert und vorhergesagt, mittlerweile hat sich das Forschungsfeld auch auf den urbanen Verkehr ausgeweitet. Fahrmanöver im urbanen Raum sind komplexer als Fahrmanöver auf Autobahnen und daher schwieriger vorherzusagen. Ziele für die Vorhersage von Fahrmanövern sind die Reduzierung von Verkehrsunfällen, die Verbesserung des Verkehrsflusses und die Entwicklung von zuverlässigen Algorithmen für das autonome Fahren. Um diese Ziele zu erreichen, wird
das Fahrverhalten bei unterschiedlichen Fahrmanövern analysiert, wie z.B. beim Abbiegevorgang an Kreuzungen, bei der Notbremsung oder beim Spurwechsel.
In dieser Arbeit wird der Spurwechsel im urbanen Straßenverkehr mit einem Echo State Network vorhergesagt. Zuerst wurden existierende Methoden zur Spurwechselvorhersage bezogen auf die Eingaben und die Ergebnisse bewertet, um danach die spurwechselbezogenen Variableneigenschaften bezüglich Spurwechsel- und Nicht-Spurwechselsequenzen zu analysieren. Die Daten, die Basis für diese ersten Untersuchungen waren, stammen aus einer Realfahrstudie. Basierend auf diesen Resultaten wurden die finalen Variablen (Lenkwinkel, Blinker und Blickrichtung) für weitere Berechnungen ausgewählt.
Mit den Daten aus der Realfahrstudie und den finalen Variablen wurden die Parameter des Echo State Networks optimiert und letztendlich wurden linke und rechte Spurwechsel vorhergesagt. Zusätzlich wurde das Echo State Network mit einem vorwärtsgerichteten neuronalen Netz verglichen. Das Echo State Network konnte linke und rechte Spurwechsel erfolgreicher vorhersagen als das vorwärtsgerichtete neuronale Netz.
|
12 |
Adaptive Eyes: Driver Distraction and Inattention PreventionThrough Advanced Driver Assistance Systems and Behaviour-Based SafetyWege, Claudia 30 January 2014 (has links)
Technology pervades our daily living, and is increasingly integrated into the vehicle – directly affecting driving. On the one hand technology such as cell phones provoke driver distraction and inattention, whereas, on the other hand, Advanced Driver Assistance Systems (ADAS) support the driver in the driving task. The question is, can a driver successfully adapt to the ever growing technological advancements?
Thus, this thesis aimed at improving safe driver behaviour by understanding the underlying psychological mechanisms that influence behavioural change. Previous research on ADAS and human attention was reviewed in the context of driver behavioural adaptation. Empirical data from multiple data sources such as driving performance data, visual behaviour data, video footage, and subjective data were analyzed to evaluate two ADAS (a brake-capacity forward collision warning system, B-FCW, and a Visual Distraction Alert System, VDA-System).
Results from a field operational test (EuroFOT) showed that brake-capacity forward collision warnings lead to immediate attention allocation toward the roadway and drivers hit the brake, yet change their initial response later on by directing their eyes toward the warning source in the instrument cluster. A similar phenomenon of drivers changing initial behaviour was found in a driving simulator study assessing a Visual Distraction Alert System. Analysis showed that a Visual Distraction Alert System successfully assists drivers in redirecting attention to the relevant aspects of the driving task and significantly improves driving performance. The effects are discussed with regard to behavioural adaptation, calibration and system acceptance. Based on these findings a novel assessment for human-machine-interaction (HMI) of ADAS was introduced.
Based on the contribution of this thesis and previous best-practices, a holistic safety management model on accident prevention strategies (before, during and after driving) was developed. The DO-IT BEST Feedback Model is a comprehensive feedback strategy including driver feedback at various time scales and therefore is expected to provide an added benefit for distraction and inattention prevention. The central contributions of this work are to advance research in the field of traffic psychology in the context of attention allocation strategies, and to improve the ability to design future safety systems with the human factor in focus. The thesis consists of the introduction of the conducted research, six publications in full text and a comprehensive conclusion of the publications.
In brief this thesis intends to improve safe driver behaviour by understanding the underlying psychological mechanisms that influence behavioral change, thereby resulting in more attention allocation to the forward roadway, and improved vehicle control.:Abstract i
Zusammenfassung iii
List of included publications v
Acknowledgements vii
Previously published work ix
Table of contents xi
Preface xii
1 Chapter 1 Introduction 1
1.1 Outline 1
1.2 Objectives 2
1.3 Background 8
1.3.1 Behavioural adaption to ADAS 8
1.3.2 Driver distraction and inattention 9
2 Chapter 2 Paper I 23
3 Chapter 3 Paper II 47
4 Chapter 4 Paper III 61
5 Chapter 5 Paper IV 91
6 Chapter 6 Paper V 117
7 Chapter 7 Paper VI 143
8 Chapter 8 Conclusions and discussion 161
8.1. Contributions 161
8.2. Implications 171
8.3. Limitations and research needs 173
9 References 177
Curriculum Vitae 199
Eidesstattliche Erklärung 201 / Technologie durchdringt unser tägliches Leben und ist zunehmend integriert in Fahrzeuge – das Resultat sind veränderte Anforderungen an Fahrzeugführer. Einerseits besteht die Gefahr, dass er durch die Bedienung innovativer Technologien (z.B. Mobiltelefone) unachtsam wird und visuell abgelenkt ist, andererseits kann die Nutzung von Fahrerassistenzsystemen die den Fahrer bei der Fahraufgabe unterstützten einen wertvollen Beitrag zur Fahrsicherheit bieten. Die steigende Aktualität beider Problematiken wirft die Frage auf: "Kann der Fahrer sich erfolgreich dem ständig wachsenden technologischen Fortschritt anpassen?"
Das Ziel der vorliegenden Arbeit ist der Erkenntnisgewinn zur Verbesserung des Fahrverhaltens indem der Verhaltensänderungen zugrunde liegende psychologische Mechanismen untersucht werden. Eine Vielzahl an Literatur zu Fahrerassistenzsystemen und Aufmerksamkeitsverteilung wurde vor dem Hintergrund von Verhaltensanpassung der Fahrer recherchiert. Daten mehrerer empirischer Quellen, z. B. Fahrverhalten, Blickbewegungen, Videomitschnitte und subjektive Daten dienten zur Datenauswertung zweier Fahrerassistenzsysteme.
Im Rahmen einer Feldstudie zeigte sich, dass Bremskapazitäts-Kollisionswarnungen zur sofortigen visuellen Aufmerksamkeitsverteilung zur Fahrbahn und zum Bremsen führen, Fahrer allerdings ihre Reaktion anpassen indem sie zur Warnanzeige im Kombinationsinstrument schauen. Ein anderes Phänomen der Verhaltensanpassung wurde in einer Fahrsimulatorstudie zur Untersuchung eines Ablenkungswarnsystems, das dabei hilft die Blicke von Autofahrern stets auf die Straße zu lenken, gefunden. Diese Ergebnisse weisen nach, dass solch ein System unterstützt achtsamer zu sein und sicherer zu fahren.
Die vorliegenden Befunde wurden im Zusammenhang zu Vorbefunden zur Verhaltensanpassung zu Fahrerassistenzsystemen, Fahrerkalibrierung und Akzeptanz von Technik diskutiert. Basierend auf den gewonnenen Erkenntnissen wurde ein neues Vorgehen zur Untersuchung von Mensch- Maschine-Interaktion eingeführt. Aufbauend auf den Resultaten der vorliegenden Arbeit wurde ein ganzheitliches Modell zur Fahrsicherheit und -management, das DO-IT BEST Feedback Modell, entwickelt. Das Modell bezieht sich auf multitemporale Fahrer-Feedbackstrategien und soll somit einen entscheidenen Beitrag zur Verkehrssicherheit und dem Umgang mit Fahrerunaufmerksamkeit leisten. Die zentralen Beiträge dieser Arbeit sind die Gewinnung neuer Erkenntnisse in den Bereichen der Angewandten Psychologie und der Verkehrspsychologie in den Kontexten der Aufmerksamkeitsverteilung und der Verbesserung der Gestaltung von Fahrerassistenzsystemen fokusierend auf den Bediener. Die Dissertation besteht aus einem Einleitungsteil, drei empirischen Beiträgen sowie drei Buchkapiteln und einer abschliessenden Zusammenfassung.:Abstract i
Zusammenfassung iii
List of included publications v
Acknowledgements vii
Previously published work ix
Table of contents xi
Preface xii
1 Chapter 1 Introduction 1
1.1 Outline 1
1.2 Objectives 2
1.3 Background 8
1.3.1 Behavioural adaption to ADAS 8
1.3.2 Driver distraction and inattention 9
2 Chapter 2 Paper I 23
3 Chapter 3 Paper II 47
4 Chapter 4 Paper III 61
5 Chapter 5 Paper IV 91
6 Chapter 6 Paper V 117
7 Chapter 7 Paper VI 143
8 Chapter 8 Conclusions and discussion 161
8.1. Contributions 161
8.2. Implications 171
8.3. Limitations and research needs 173
9 References 177
Curriculum Vitae 199
Eidesstattliche Erklärung 201
|
13 |
Situation Assessment at Intersections for Driver Assistance and Automated Vehicle ControlStreubel, Thomas 20 January 2016 (has links)
The development of driver assistance and automated vehicle control is in process and finds its way more and more into urban traffic environments. Here, the complexity of traffic situations is highly challenging and requires system approaches to comprehend such situations. The key element is the process of situation assessment to identify critical situations in advance and derive adequate warning and intervention strategies.
This thesis introduces a system approach to establish a situation assessment process with the focus on the prediction of the driver intention. The system design is based on the Situation Awareness model by Endsley. Further, a prediction algorithm is created using Hidden Markov Models. To define the parameters of the models, an existing database is used and previously analyzed to identify reasonable variables that indicate an intended driving direction while approaching the intersection. Here, vehicle dynamics are used instead of driver inputs to enable a further extension of the prediction, i.e.\\ to predict the driving intention of other vehicles detected by sensors. High prediction rates at temporal distances of several seconds before entering the intersection are accomplished.
The prediction is integrated in a system for situation assessment including an intersection model. A Matlab tool is created with an interface to the vehicle CAN bus and the intersection modeling which uses digital map data to establish a representation of the intersection. To identify differences and similarities in the process of approaching an intersection dependent on the intersection shape and regulation, a naturalistic driving study is conducted. Here, the distance to the intersection and velocity is observed on driver inputs related to the upcoming intersection (leaving the gas pedal, pushing the brake, using the turn signal). The findings are used to determine separate prediction models dependent on shape and regulation of the upcoming intersection. The system runs in real-time and is tested in a real traffic environment.:Contents
List of Figures
Acronyms
1 Introduction
1.1 Motivation
1.2 Outline
2 Fundamentals
2.1 Traffic Intersections
2.2 Situation Assessment
2.3 Prediction of Driver Intention
2.3.1 Methods Overview
2.3.2 Hidden Markov Models
2.4 Localization
3 Driving Behavior
3.1 Data Analysis
3.1.1 Data selection and processing
3.1.2 Results
3.1.3 Conclusion
3.2 Naturalistic Driving Study
3.2.1 Background
3.2.2 Methods
3.2.3 Results
3.2.4 Discussion and Conclusion
4 Prediction Algorithm
4.1 Framework
4.2 Input data
4.3 Evaluation
4.4 Validation
4.5 Conclusion
5 System Approach
5.1 Sensing
5.2 Situation analysis
5.3 Prediction
5.3.1 Implementation
5.3.2 Graphical User Interface (GUI)
5.3.3 Testing and Outlook
6 Conclusion and Outlook
Bibliography / Die Entwicklung von Fahrerassistenz und automatisiertem Fahren ist in vollem Gange und entwickelt sich zunehmend in Richtung urbanen Verkehrsraum. Hier stellen besonders komplexe Verkehrssituationen sowohl für den Fahrer als auch für Assistenzsysteme eine Herausforderung dar. Zur Bewältigung dieser Situationen sind neue Systemansätze notwendig, die eine Situationsanalyse und -bewertung beinhalten. Dieser Prozess der Situationseinschätzung ist der Schlüssel zum Erkennen von kritischen Situationen und daraus abgeleiteten Warnungs- und Eingriffsstrategien.
Diese Arbeit stellt einen Systemansatz vor, welcher den Prozess der Situationseinschätzung abbildet mit einem Fokus auf die Prädiktion der Fahrerintention. Das Systemdesign basiert dabei auf dem Situation Awareness Model von Endsley. Der Prädiktionsalgorithmus ist mit Hilfe von Hidden Markov Modellen umgesetzt. Zur Bestimmung der Modellparameter wurde eine existierende Datenbasis genutzt und zur Bestimmung von relevanten Variablen für die Prädiktion der Fahrtrichtung während der Kreuzungsannäherung analysiert. Dabei wurden Daten zur Fahrdynamik ausgewählt anstelle von Fahrereingaben um die Prädiktion später auf externe Fahrzeuge mittels Sensorinformationen zu erweitern. Es wurden hohe Prädiktionsraten bei zeitlichen Abständen von mehreren Sekunden bis zum Kreuzungseintritt erzielt.
Die Prädiktion wurde in das System zur Situationseinschätzung integriert. Weiterhin beinhaltet das System eine statische Kreuzungsmodellierung. Dabei werden digitale Kartendaten genutzt um eine Repräsentation der Kreuzung und ihrer statischen Attribute zu erzeugen und die der Kreuzungsform entsprechenden Prädiktionsmodelle auszuwählen. Das Gesamtsystem ist als Matlab Tool mit einer Schnittstelle zum CAN Bus implementiert. Weiterhin wurde eine Fahrstudie zum natürlichen Fahrverhalten durchgeführt um mögliche Unterschiede und Gemeinsamkeiten bei der Annäherung an Kreuzungen in Abhängigkeit der Form und Regulierung zu identifizieren. Hierbei wurde die Distanz zur Kreuzung und die Geschwindigkeit bei Fahrereingaben im Bezug zur folgenden Kreuzung gemessen (Gaspedalverlassen, Bremspedalbetätigung, Blinkeraktivierung). Die Ergebnisse der Studie wurden genutzt um die Notwendigkeit verschiedener Prädiktionsmodelle in Abhängigkeit von Form der Kreuzung zu bestimmen. Das System läuft in Echtzeit und wurde im realen Straßenverkehr getestet.:Contents
List of Figures
Acronyms
1 Introduction
1.1 Motivation
1.2 Outline
2 Fundamentals
2.1 Traffic Intersections
2.2 Situation Assessment
2.3 Prediction of Driver Intention
2.3.1 Methods Overview
2.3.2 Hidden Markov Models
2.4 Localization
3 Driving Behavior
3.1 Data Analysis
3.1.1 Data selection and processing
3.1.2 Results
3.1.3 Conclusion
3.2 Naturalistic Driving Study
3.2.1 Background
3.2.2 Methods
3.2.3 Results
3.2.4 Discussion and Conclusion
4 Prediction Algorithm
4.1 Framework
4.2 Input data
4.3 Evaluation
4.4 Validation
4.5 Conclusion
5 System Approach
5.1 Sensing
5.2 Situation analysis
5.3 Prediction
5.3.1 Implementation
5.3.2 Graphical User Interface (GUI)
5.3.3 Testing and Outlook
6 Conclusion and Outlook
Bibliography
|
Page generated in 0.1109 seconds