• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 12
  • 10
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 88
  • 33
  • 19
  • 19
  • 19
  • 18
  • 18
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

CIGTF Enhanced Precision Reference Systems

Lawrence, Robert S., Gregory, George, Stutz, Derryl, Sanchez, Jerry, Neal, Brent 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The 746th Test Squadron at Holloman AFB has developed and utilized the Central Inertial Guidance Test Facility (CIGTF) High Accuracy Post-processing Reference System (CHAPS). CHAPS is a multi-sensor navigation reference system used to evaluate position, velocity, and attitude performance of Global Positioning System (GPS), Inertial Navigation System (INS), and Embedded GPS/INS (EGI) navigation systems on large vehicles and aircraft. Reference data is processed post-test with accuracy ranges from a meter to sub-meter depending on the reference configuration and test environment (profile, trajectory dynamics, GPS jamming, etc.). The GPS Aided Inertial Navigation Reference (GAINR) system developed by the Air Force Flight Test Center (Edwards AFB) offered other utilization capabilities (test beds and post-processing time). The basic sensor assembly is an EGI navigation system. The data are post-processed with Multisensor Optimal Smoothing Estimation Software (MOSES). Incorporating CHAPS and GAINR capabilities generates a reference system with enhanced accuracy (sub-meter) in a dynamic GPS non-jamming/jamming environment. This paper will present the enhanced reference system combination of CHAPS/GAINR capabilities, characterization process and development methodology.
12

Precise positioning in real-time using GPS-RTK signal for visually impaired people navigation system

Al-Salihi, Nawzad Kameran January 2010 (has links)
This thesis presents the research carried out to investigate and achieve highly reliable and accurate navigation system of guidance for visually impaired pedestrians. The main aim with this PhD project has been to identify the limits and insufficiencies in utilising Network Real-Time Kinematic Global Navigation Satellite Systems (NRTK GNSS) and its augmentation techniques within the frame of pedestrian applications in a variety of environments and circumstances. Moreover, the system can be used in many other applications, including unmanned vehicles, military applications, police, etc. NRTK GNSS positioning is considered to be a superior solution in comparison to the conventional standalone Global Positioning System (GPS) technique whose accuracy is highly affected by the distance dependent errors such as satellite orbital and atmospheric biases. Nevertheless, NRTK GNSS positioning is particularly constrained by wireless data link coverage, delays of correction and transmission and completeness, GPS and GLONASS signal availability, etc., which could downgrade the positioning quality of the NRTK results. This research is based on the dual frequency NRTK GNSS (GPS and GLONASS). Additionally, it is incorporated into several positioning and communication methods responsible for data correction while providing the position solutions, in which all identified contextual factors and application requirements are accounted. The positioning model operates through client-server based architecture consisted of a Navigation Service Centre (NSC) and a Mobile Navigation Unit (MNU). Hybrid functional approaches were consisting of several processing procedures allowing the positioning model to operate in position determination modes. NRTK GNSS and augmentation service is used if enough navigation information was available at the MNU using its local positioning device (GPS/GLONASS receiver).The positioning model at MNU was experimentally evaluated and centimetric accuracy was generally attained during both static and kinematic tests in various environments (urban, suburban and rural). This high accuracy was merely affected by some level of unavailability mainly caused by GPS and GLONASS signal blockage. Additionally, the influence of the number of satellites in view, dilution of precision (DOP) and age corrections (AoC) over the accuracy and stability of the NRTK GNSS solution was also investigated during this research and presented in the thesis. This positioning performance has outperformed the existing GPS service. In addition, utilising a simulation evaluation facility the positioning model at MNU performance was quantified with reference to a hybrid positioning service that will be offered by future Galileo Open Service (OS) along with GPS. However, a significant difference in terms of the service availability for the advantage of the hybrid system was experienced in all remaining scenarios and environments more especially the urban areas due to surrounding obstacles and conditions. As an outcome of this research a new and precise positioning model was proposed. The adaptive framework is understood as approaching an integration of the available positioning technology into the context of surrounding wireless communication for a maintainable performance. The positioning model has the capability of delivering indeed accurate, precise and consistent position solutions, and thus is fulfilling the requirements of visually impaired people navigation application, as identified in the adaptive framework.
13

Simuleringsmodell av tröghetsnavigator / Simulation model of Inertial Navigation System

Bergendorff, Markus January 2021 (has links)
När tiden för utveckling av nya produkter kortas ner måste testning och verifiering utföras i ett tidigare utvecklingsstadie. Genom simulering av systemet kan tester utföras utan tillgång till det faktiska systemet och därmed kan utvecklingsprocessen accelereras. I BAE Systems Hägglunds stridsvagnar används en tröghetsnavigator som kan beräkna stridsvagnens position utan externa referenser. Test och verifiering av navigation med denna enhet i testbänk är ej fullt möjligt. Syftet med detta arbete är att kunna genomföra verklighetstrogna tester, i testbänk i utvecklingsfasen, genom att simulera navigatorns funktioner. Eftersom kommunikation med fordonssystemet ska ske i realtid samtidigt som navigationsdata läses från ett externt program, så ställs krav på att modellen har tillräcklig prestanda för att ge en verklighetstrogen simulering. Den övergripande frågeställningen i detta examensarbete är om en modell realiserad på en mikrokontroller (MCU) har tillräcklig prestanda för att användas vid simulering av en tröghetsnavigator. För att besvara frågeställningen har hårdvara för anpassning av gränssnittet mellan fordonssystem, MCU och externt program samt mjukvara för att simulera en tröghetsnavigator skapats. Därefter har modellen verifierats genom att mäta tiden för utvalda processer. Alla funktioner hos navigatorn har inte implementerats i simuleringsmodellen men resultaten visar att modellen kan användas för verklighetstrogna tester i testbänk. / When time for development of new products is shortened, testing and verification must be performed at an earlier stage of development. By simulating the system, tests can be performed without access to the actual system and thus the development process can be accelerated.  BAE Systems Hägglunds manufacture combat vehicles and use an Inertial Navigation System (INS) to calculate the combat vehicle’s position without external references. Testing and verification of navigation with this unit in the test bench is not entirely possible.  The aim of this thesis is to enable realistic tests, in a test bench in the development phase, by simulating the navigator’s functions. Since communication with the Vehicle Control System (VCS) must take place in real time at the same time as navigation data must be read from external program, the model is required to have sufficient performance to provide a realistic simulation.  The overall question in this thesis is whether a model realized on a microcontroller (MCU) has sufficient performance to be used for simulation of an INS. To answer the question at issue, hardware for adapting the interface between the VCS, MCU and external program as well as software for simulating an INS have been created. Thereafter, the model has been verified by measuring the time for selected processes.  Not all functions of the navigator have been implemented in the simulation model, but the results show that the model can be used for realistic tests in the test bench.
14

Navigation algorithm for spacecraft lunar landing

Paturi, Sasikanth Venkata Sai 07 August 2010 (has links)
A detailed analysis and design of a navigation algorithm for a spacecraft to achieve precision lunar descent and landing is presented. The Inertial Navigation System (INS) was employed as the primary navigation system. To increase the accuracy and precision of the navigation system, the INS was integrated with aiding sensors - a star camera, an altimeter and a terrain camera. An unscented Kalman filter was developed to integrate the aiding sensor measurements with the INS measurements, and to estimate the current position, velocity and attitude of the spacecraft. The errors associated with the accelerometer and gyro measurements are also estimated as part of the navigation filter. An STK scenario was utilized to simulate the truth data for the navigation system. The navigation filter developed was tested and simulated, and from the results obtained, the position, velocity and attitude of the spacecraft were observed to be well estimated.
15

An investigation of integrated global positioning system and inertial navigation system fault detection

Ramaswamy, Sridhar January 2000 (has links)
No description available.
16

Integrated Global Positioning System and inertial navigation system integrity monitor performance

Harris, William M. January 2003 (has links)
No description available.
17

Integration of differential global positioning system and an inertial navigation system for aircraft surface movement guidance

Berz, Gerhard E. January 1998 (has links)
No description available.
18

Needle Navigation for Image Guided Brachytherapy of Gynecologic Cancer / Navigering av nål vid bildstyrd brachyterapi av gynekologisk cancer

Mehrtash, Alireza January 2019 (has links)
In the past twenty years, the combination of the advances in medical imaging technologies and therapeutic methods had a great impact in developing minimally invasive interventional procedures. Although the use of medical imaging for the surgery and therapy guidance dates back to the early days of x-ray discovery, there is an increasing evidence in using the new imaging modalities such as computed tomography (CT), magnetic reso- nance imaging (MRI) and ultrasound in the operating rooms. The focus of this thesis is on developing image-guided interventional methods and techniques to support the radiation therapy treatment of gynecologic cancers. Gynecologic cancers which involves malignan- cies of the uterus, cervix, vagina and the ovaries are one of the top causes of mortality and morbidity among the women in U.S. and worldwide. The common treatment plan for radiation therapy of gynecologic cancers is chemotherapy and external beam radiation therapy followed by brachytherapy. Gynecological brachytherapy involves placement of interstitial catheters in and around the tumor area, often with the aid of an applicator. The goal is to create an optimal brachytherapy treatment plan that leads to maximal radiation dose to the cancerous tissue and minimal destructive radiation to the organs at risk. The accuracy of the catheter placement has a leading effect in the success of the treatment. However there are several techniques are developed for navigation of catheters and needles for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is obviously lacking for gynecologic brachytherapy procedures. This thesis proposes a technique which aims to increase the accuracy and efficiency of catheter placements in gynecologic brachytherapy by guiding the catheters with an electromagnetic tracking system. To increase the accuracy of needle placement a navigation system has been set up and the appropriate software tools were developed and released for the public use as a module in the open-source 3D Slicer software. The developed technology can be translated from benchmark to the bedside to offer the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs including bladder, rectum and bowel. To test the designed system two independent experiments were designed and performed on a phantom model in order to evaluate the targeting accuracy of the tracking system and the mean targeting error over all experiments was less than 2.9 mm, which can be compared to the targeting errors in the available commercial clinical navigation systems.
19

In-Car Navigation Systems: The Effects of Landmark Specificity and Map Rotation on Spatial Knowledge and Route Acquisition

Saffell, Tiffany N. 24 June 2008 (has links)
No description available.
20

THE APPLICATION OF MAP MATCHING METHOD IN GPS/INS INTEGRATED NAVIGATION SYSTEM

Fei, Peng, Qishan, Zhang, Zhongkan, Liu 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Map matching method plays an important role in vehicle location and navigation systems. It employs the information in a digital map to compensate the positioning error. This paper presents a fuzzy-logic-based probabilistic map-matching algorithm used in GPS/INS integrated navigation systems, in which the reliability degree of map matching resolution is given explicitly as the decision basis in selecting matching road segment by utilizing the fuzzy comprehensive judgement. The results of experimental simulations have shown that the system performance gained significant enhancement by introducing this algorithm.

Page generated in 0.1167 seconds