• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Увеличение полосы частот электрически малой антенны с использованием конвертора отрицательного сопротивления на основе операционного усилителя : магистерская диссертация / Increasing the frequency band of an electrically small antenna using a negative resistance converter based on an operational amplifier

Кабиров, Д. Д., Kabirov, D. D. January 2017 (has links)
В работе представлены результатыисследования метода, который позволяет увеличить полосу частот электрически малой антенны с помощью “нефостеровской цепи”на основе операционного усилителя. Были получены графики, которые позволяют оценить входное реактивное сопротивление и полосу частот электрически малой антенны с представленным методом расширения полосы частот. / The paper presents the results of a study of the method, which makes it possible to increase the frequency band of an electrically small antenna by means of a "Non-foster circuit"with operational amplifier. The graphs were obtain, which allow estimating the input reactance and the bandwidth of an electrically small antenna with the method of bandwidth extension represented.
2

Расширение полосы частот электрически малой антенны, с использованием конвертора отрицательного сопротивления на основе транзисторов : магистерская диссертация / Expansion of the frequency band of an electrically small antenna, using a negative-resistance converter based on transistors

Лубский, В. А., Lubsky, V. A. January 2017 (has links)
В работе представлены результатыисследования метода, который позволяет увеличить полосу частот электрически малой антенны с помощью “нефостеровской цепи”.Также были представлены классические методы расширения полосы частот антенны с помощью индуктивности и колебательного контура, чтобы сравнить их эффективность с исследуемым методом. Были получены графики, которые позволяют оценить входное реактивное сопротивление и полосу частот электрически малой антенны со всеми представленными методами расширения полосы частот. / The paper presents the results of a study of the method, which makes it possible to increase the frequency band of an electrically small antenna by means of a "Non-foster circuit". Also, classical methods for extending the frequency band of the antenna with the help of inductance and a vibrational circuit were presented to compare their effectiveness with the method being studied.
3

Design and phase-noise modeling of temperature-compensated high frequency MEMS-CMOS reference oscillators

Miri Lavasani, Seyed Hossein 18 May 2010 (has links)
Frequency reference oscillator is a critical component of modern radio transceivers. Currently, most reference oscillators are based on low-frequency quartz crystals that are inherently bulky and incompatible with standard micro-fabrication processes. Moreover, their frequency limitation (<200MHz) requires large up-conversion ratio in multigigahertz frequency synthesizers, which in turn, degrades the phase-noise. Recent advances in MEMS technology have made realization of high-frequency on-chip low phase-noise MEMS oscillators possible. Although significant research has been directed toward replacing quartz crystal oscillators with integrated micromechanical oscillators, their phase-noise performance is not well modeled. In addition, little attention has been paid to developing electronic frequency tuning techniques to compensate for temperature/process variation and improve the absolute frequency accuracy. The objective of this dissertation was to realize high-frequency temperature-compensated high-frequency (>100MHz) micromechanical oscillators and study their phase-noise performance. To this end, low-power low-noise CMOS transimpedance amplifiers (TIA) that employ novel gain and bandwidth enhancement techniques are interfaced with high frequency (>100MHz) micromechanical resonators. The oscillation frequency is varied by a tuning network that uses frequency tuning enhancement techniques to increase the tuning range with minimal effect on the phase-noise performance. Taking advantage of extended frequency tuning range, and on-chip temperature-compensation circuitry is embedded with the sustaining circuitry to electronically temperature-compensate the oscillator. Finally, detailed study of the phase-noise in micromechanical oscillators is performed and analytical phase-noise models are derived.

Page generated in 0.1157 seconds