Spelling suggestions: "subject:"neoplasms -- genetics."" "subject:"neoplasmas -- genetics.""
101 |
Genome-wide identification of novel candidate tumor suppressor genes in Hong Kong common tumors through integrative cancer epigenetics and genomics. / CUHK electronic theses & dissertations collectionJanuary 2007 (has links)
Cancer is the leading cause of death in Hong Kong (21,300 new cases and 11,500 deaths in 2003), with nasopharyngeal carcinoma (NPC), esophageal cancer (ESCC), and colorectal cancer (CRC) among the common ones. For these tumors, most patients present with advanced stage disease and poor treatment outcome, with an urge of early detection. Epigenetic inactivation of tumor suppressor genes (TSG) by CpG methylation represents an important mechanism of tumorigenesis, in addition to genetic abnormalities. Tumor-specific methylation can also be used as biomarkers for the identification of novel TSGs and for cancer early diagnosis and prognosis prediction. / Finally, for the purpose of development of epigenetic biomarker for cancer molecular diagnosis, I screened gene methylation in the serum samples. Aberrant methylation of PCDH10 and DLC1 was detected in serum samples (2/14 (14%) and 4/14 (29%) respectively) from tumor patients but not in normal controls. It suggests that screening for PCDH10 and DLC1 methylation in sera could be a tumor-specific and non-invasive epigenetic biomarker for molecular diagnosis and prognostics. (Abstract shortened by UMI.) / In the second approach, 1-Mb array-based comparative genomic hybridization (aCGH) was carried out to detect DNA copy number aberrations, which contain potential TSG loci, in a panel of NPC and ESCC cell lines. Frequent deletions include: 1p36.3, 3p14-11, 4p16-15, 5p13-q12, 6p21-12, 8p22-cent, 9p, 9q22-31, 10p, 13q12, 14q32, 16q23-24, 17q11.2, 18q in NPC, and 1p21, 4q21, 7p21, 7q35, 8p22-23, 8q11, 10p11, 11q22, 13q31, 14q32, 18q11-23 in ESCC. Several deletions (3p14-11 and 16q23) were further investigated in detail in this study. More than 12 genes were identified to be frequently silenced by methylation in tumors, including FHIT (3p14), WNT5A (3p14), ADAMTS9 (3p14), FEZF2 (3p14), ROBO (3p12), CADM2 (3p12), EPHA3 (3p11), RAB (11q22), ADAMTS18 (16q23), and TUSC8 (16q23), while homozygous deletion of these genes was infrequently detected. Aberrant methylation of these genes was also frequently detected in primary tumors in a tumor-specific manner. The tumor suppressor functions of TUSC8, WNT5A, CADM2 and ROBO were further investigated and validated. Further experiment indicated that induction of tumor cell apoptosis may contribute to the tumor suppressor function of TUSC8. / Modified genomic methylation subtractive approaches using uracil-DNA glycosylase or combined with pharmacological demethylation were developed. GADD45G, PCDH10, ROR2, DLC1L1 were among a series of novel methylated targets identified by these approaches. Methylation-associated silencing of these genes was frequently detected in various types of tumor cell lines and primary tumors including NPC, ESCC and CRC, in a tumor-specific manner. Ectopic expression of these genes strongly suppressed tumor cell growth and colony formation of silenced tumor cells. Epigenetic inactivation of GADD45G is the major mechanism for the loss of its response to environmental stresses. Reintroduction of PCDH10 strongly suppressed tumor cell migration and invasion. Ectopic expression of DLC1L1 in silenced tumor cells resulted in a remarkable suppression of tumor cell clonogenicity, which depends on its GAP activity. Furthermore, DLC1L1, but not its inactivating mutants, inhibited Ras mediated oncogenic transformation. Thus, these identified genes are functional TSGs. / Ying Jianming. / "July 2007." / Adviser: Qian Tao. / Source: Dissertation Abstracts International, Volume: 69-01, Section: B, page: 0083. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 147-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
|
102 |
Abnormal cAMP-dependent protein kinase activity leads to bone tumors in adult mice but this depends on the PKA subunit expressions / CUHK electronic theses & dissertations collectionJanuary 2015 (has links)
Protein kinase A (PKA) is an important enzyme inside the body; it is responsible for phosphorylation of gene regulatory elements and thus regulation of gene expression inside the nucleus. Malfunction of PKA affects transcriptional and translational levels of cell signaling ligands, leading to abnormal activity of various signaling pathways. PKA holoenzyme is composed of two regulatory and two catalytic subunits; four main regulatory subunit isoforms (R1α, R1β, R2α and R2β) and four main catalytic subunit isoforms (Cα, Cβ, Cγ and Prkx) of PKA have been identified. Mutations in these subunits lead to altered total PKA activities and PKAT-I to PKAT-II ratios, leading to diseases both in human and mice. These diseases include Carney Complex (CNC), fibrous dysplasia (FD) and Cushing syndrome. We studied the effect of PKA subunit mutations on intracellular PKA activities, PKAT-I to PKAT-II ratios, and bone and adrenal gland phenotypes in transgenic mouse models. Firstly, we generated whole-body transgenic mice single or double heterozygous for PKA regulatory subunits. Tail vertebral bone lesions including osteosarcomas, osteochondromas and osteochondrosarcomas were found in these mice and we found that mutations in different PKA subunits affect bone lesion formation, new bone generation, and bone organization and mineralization in mouse tail vertebrae. Elevated Cβ subunit expression in Parkar1a+/-Prkar2a+/- and Prkar1a+/-Prkar2b+/-double heterozygous mice leads to a less severe vertebral bone lesion phenotype, an increased osteogenic activity and a better bone regeneration activity. We then studied mice with tissue specific knock out of Prkar1a, the gene coding for type I regulatory subunit, specifically in adrenal cortex (AdKO). AdKO mice developed pituitary-independent Cushing syndrome with increased PKA activity. They also demonstrated increased plasma corticosterone levels resistant to dexamethasone suppression. Dietary treatment of both mice with bone lesions and mice with adrenal lesions with COX2 inhibitor Celecoxib led to partial rescue of phenotypes; this is due to inhibition of the positive feedback loop between PKA signaling and inflamasome pathway at COX2 induction level by Celecoxib. / 蛋白激酶A(PKA)是人體中重要的蛋白酶, 它通過燐酸化基因調控元件來實現對細胞核內基因表達的調節。PKA異常影響細胞內信號傳遞因子的基因轉錄和蛋白翻譯水平,從而導致各細胞信號通路的異常活動。PKA全酶由兩個調節亞基和兩個催化亞基組成,目前已經發現的有四個調節亞基 (R1α, R1β, R2α 和R2β) 以及四個催化亞基(Cα, Cβ, Cγ和Prkx)。發生在這些亞基中的基因突變會改變總的PKA活動水平,PKA-I 和PKA-II的比例,在人類和實驗鼠中引起疾病。這些疾病包括卡尼綜合症 (CNC),骨纖維性發育不良(FD)和庫欣綜合症。我們在轉基因鼠模型中研究PKA亞基突變對細胞中PKA總活性, PKA-I和PKA-II比例的影響,以及由此帶來的骨和腎上腺表型的改變和病變。我們首先製造了有一個或兩個PKA亞基雜合性缺失的全身轉基因鼠。在這些轉基因鼠中,我們發現了包括骨肉瘤,骨軟骨瘤和骨軟骨肉瘤在內的尾椎骨病變。研究發現在不同PKA亞基中的基因變異對實驗鼠尾椎骨病變的發生,新骨的形成和骨的結構和纖維化均有影響。在Prkar1a+/-Prkar2a+/-和Prkar1a+/-Prkar2b+/-實驗鼠中我們發現了較高的Cβ催化亞基表達,這兩個基因型因此具有更輕度的骨病變和更強的骨再生能力。我們繼續研究了在腎上腺中敲除了標記PKA 第一調節亞基的Prkar1a基因的實驗鼠 (AdKO)。AdKO實驗鼠中產生了與垂體無關的庫欣綜合症,並伴隨PKA活性的增加。它們還表現出耐地塞米松抑制的血漿皮質酮水平增加。對骨病變或腎上腺病變的實驗鼠通過飲食進行COX2抑制劑塞來昔布的治療可以部分緩解病變表型。這是由對PKA和炎性體的正反饋機制在COX2誘導步驟的抑制造成的。 / Liu, Sisi. / Thesis Ph.D. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 115-130). / Abstracts also in Chinese. / Title from PDF title page (viewed on 09, September, 2016). / Detailed summary in vernacular field only.
|
103 |
Loss of heterozygosity on chromosome 1 in cervical cancer.January 1998 (has links)
Poon Cho Sun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 83-91). / Abstract also in Chinese. / ACKNOWLEDGEMENT --- p.v / ABSTRACT --- p.vi / LIST OF ABBREVIATIONS --- p.x / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Literature review --- p.5 / Chapter 2.1 --- Epidemiology and aetiology of cervical cancer --- p.5 / Chapter 2.1.1 --- Incidence and mortality --- p.5 / Chapter 2.1.2 --- Aetiology --- p.6 / Chapter 2.1.2.1 --- Oral contraceptive pills and cervical cancer --- p.7 / Chapter 2.1.2.2 --- Human papilloma virus (HPV) and cervical cancer --- p.7 / Chapter 2.1.2.3 --- Immunity and cervical cancer --- p.8 / Chapter 2.1.2.4 --- Socio-economic differences and cervical cancer --- p.9 / Chapter 2.1.2.5 --- Smoking and cervical cancer --- p.9 / Chapter 2.1.2.6 --- Male role and cervical cancer --- p.9 / Chapter 2.1.2.7 --- Nutrition and cervical cancer --- p.10 / Chapter 2.2 --- Oncogenes and tumour suppressor genes --- p.10 / Chapter 2.2.1 --- Oncogene --- p.10 / Chapter 2.2.2 --- Tumour suppressor gene --- p.13 / Chapter 2.2.3 --- Alterations of oncogene in cervical cancer --- p.16 / Chapter 2.2.4 --- Alterations of tumour suppressor genes in cervical cancer --- p.18 / Chapter 2.3 --- Alterations of chromosome 1 in cervical cancer --- p.19 / Chapter 2.3.1 --- Cytogenetic tudy --- p.19 / Chapter 2.3.2 --- Molecular genetic study --- p.21 / Chapter 2.4 --- Loss of heterozygosity (LOH) --- p.21 / Chapter Chapter 3 --- Materials and methods --- p.24 / Chapter 3.1 --- Materials --- p.24 / Chapter 3.1.1 --- Patients --- p.24 / Chapter 3.1.2 --- Specimens --- p.24 / Chapter 3.1.2.1 --- Blood samples --- p.24 / Chapter 3.1.2.2 --- Tumour tissue specimens --- p.24 / Chapter 3.1.3 --- Chemicals and reagents --- p.25 / Chapter 3.1.3.1 --- Chemicals --- p.25 / Chapter 3.1.3.2 --- Reagents --- p.27 / Chapter 3.1.3.3 --- Markers --- p.29 / Chapter 3.1.4 --- Major equipment --- p.33 / Chapter 3.2 --- Methodology --- p.33 / Chapter 3.2.1 --- DNA extraction --- p.33 / Chapter 3.2.2 --- DNA amplification --- p.35 / Chapter 3.2.2.1 --- Validation of PCR primers and optimisation of PCR condition --- p.35 / Chapter 3.2.2.2 --- End labelling of the primer by (γ-32p)ATP --- p.35 / Chapter 3.2.2.3 --- PCR for LOH detection --- p.36 / Chapter 3.2.2.4 --- Electrophoresis --- p.37 / Chapter 3.2.2.5 --- Gel dry and radioautography --- p.38 / Chapter 3.2.2.6 --- PCR analysis of the D1S80 and D1S76 loci --- p.39 / Chapter 3.3 --- Determination of Loss of heterozygosity (LOH) --- p.39 / Chapter 3.4 --- Statistical analysis --- p.40 / Chapter Chapter 4 --- Results --- p.41 / Chapter 4.1 --- LOH analysis in cervical cancer --- p.41 / Chapter 4.2 --- LOH and age in cervical cancer --- p.60 / Chapter 4.3 --- LOH and pathological grade in cervical cancer --- p.62 / Chapter 4.4 --- LOH and clinical stage in cervical cancer --- p.64 / Chapter 4.5 --- LOH and clinical status in cervical cancer --- p.66 / Chapter Chapter 5 --- Discussion --- p.68 / Chapter 5.1 --- Microsatellite markers --- p.69 / Chapter 5.2 --- PCR condition --- p.70 / Chapter 5.3 --- LOH in cervical cancer --- p.72 / Chapter 5.4 --- Correlation of LOH with clinico-pathologic characteristics of cervical cancer --- p.76 / Chapter 5.4.1 --- LOH and age --- p.78 / Chapter 5.4.2 --- LOH and clinical stage --- p.78 / Chapter 5.4.3 --- LOH and pathologic grade --- p.79 / Chapter 5.4.4 --- LOH and clinical status --- p.79 / Chapter Chapter 6 --- Conclusion --- p.80 / Chapter Chapter 7 --- References --- p.83
|
104 |
Identification of peroxisome proliferator-activated receptor alpha (PPARα)-dependent genes involved in peroxisome proliferator-induced hepatocarcinogenesis.January 2006 (has links)
Leung Wan-chi. / Thesis submitted in: November 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 276-284). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese Version) --- p.v / Acknowledgements --- p.viii / Tables of Contents --- p.ix / List of Abbreviations --- p.xxx / List of Figures --- p.xxxiii / List of Tables --- p.xlii / Chapter Chapter 1 --- Literature review --- p.1 / Chapter 1.1 --- Peroxisome proliferator activator receptors --- p.1 / Chapter 1.2 --- Peroxisome proliferators --- p.6 / Chapter 1.2.1 --- Hepatomegaly --- p.9 / Chapter 1.2.2 --- Peroxisome proliferation --- p.11 / Chapter 1.2.3 --- Target genes regulation --- p.12 / Chapter 1.2.4 --- Hypolipidemic effect --- p.16 / Chapter 1.2.5 --- Hepatocarcinogenesis --- p.18 / Chapter 1.3 --- Mode of actions --- p.20 / Chapter 1.3.1 --- Oxidative stress --- p.21 / Chapter 1.3.2 --- Inhibition of apoptosis --- p.22 / Chapter 1.3.2 --- Increase in cell replication --- p.22 / Chapter 1.3.4 --- Alterations in cell cycle control --- p.23 / Chapter 1.4 --- Objectives --- p.23 / Chapter Chapter 2 --- Materials and Methods --- p.25 / Chapter 2.1 --- Animal tail-genotyping --- p.25 / Chapter 2.1.1 --- Materials --- p.25 / Chapter 2.1.2 --- Methods --- p.28 / Chapter 2.2 --- Animal treatment --- p.29 / Chapter 2.2.1 --- Materials --- p.29 / Chapter 2.2.2 --- Methods --- p.29 / Chapter 2.3 --- Serum cholesterol and tryiglyceride analysis --- p.30 / Chapter 2.3.1 --- Materials --- p.31 / Chapter 2.3.2 --- Methods --- p.31 / Chapter 2.3.2.1 --- Serum preparation --- p.31 / Chapter 2.3.2.2 --- Serum cholesterol analysis --- p.31 / Chapter 2.3.2.3 --- Serum triglyceride analysis --- p.32 / Chapter 2.4 --- Histological analysis --- p.32 / Chapter 2.4.1 --- Materials --- p.32 / Chapter 2.4.2 --- Methods --- p.33 / Chapter 2.5 --- Total RNA isolation --- p.34 / Chapter 2.5.1 --- Materials --- p.34 / Chapter 2.5.2 --- Methods --- p.34 / Chapter 2.6 --- DNase I treatment of total liver RNA --- p.37 / Chapter 2.6.1 --- Materials --- p.37 / Chapter 2.6.2 --- Methods --- p.37 / Chapter 2.7 --- Reverse transcription (RT) of mRNA and non- fluorescent PCR (non-fluoroDD PCR) --- p.38 / Chapter 2.7.1 --- Materials --- p.43 / Chapter 2.7.2 --- Methods --- p.43 / Chapter 2.8 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.44 / Chapter 2.8.1 --- Materials --- p.44 / Chapter 2.8.2 --- Method --- p.44 / Chapter 2.9 --- Fluorescent differential display (fluoroDD) --- p.45 / Chapter 2.9.1 --- Materials --- p.45 / Chapter 2.9.2 --- Methods --- p.45 / Chapter 2.9.2.1 --- FluoroDD gel preparation --- p.45 / Chapter 2.9.2.2 --- Sample preparation and electrophoresis --- p.45 / Chapter 2.10 --- Excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.10.1 --- Materials --- p.46 / Chapter 2.10.2 --- Methods --- p.46 / Chapter 2.11 --- Reamplification of differentally expressed cDNA fragments --- p.48 / Chapter 2.11.1 --- Materials --- p.48 / Chapter 2.11.2 --- Methods --- p.50 / Chapter 2.12 --- Subcloning of reamplified cDNA fragmens --- p.50 / Chapter 2.12.1 --- Materials --- p.53 / Chapter 2.12.2 --- Methods --- p.53 / Chapter 2.12.2.1 --- Ligation --- p.53 / Chapter 2.12.2.2 --- Transformation --- p.53 / Chapter 2.12.2.3 --- Phenol-choloroform extraction --- p.54 / Chapter 2.12.2.4 --- Confirmation of insert size by EcoRI digestion --- p.54 / Chapter 2.12.2.5 --- Mini-preparation of plasmid DNA from recombinant clones --- p.55 / Chapter 2.13 --- Sequencing of subcloned cDNA fragments --- p.55 / Chapter 2.13.1 --- Materials --- p.56 / Chapter 2.13.2 --- Methods --- p.56 / Chapter 2.13.2.1 --- Sequencing of fluoroDD cDNA fragments --- p.56 / Chapter 2.13.2.2 --- Blast search against computer database --- p.57 / Chapter 2.14 --- Northern blot analysis of sequenced cDNA fragments --- p.57 / Chapter 2.14.1 --- Materials --- p.58 / Chapter 2.14.2 --- Methods --- p.58 / Chapter 2.14.2.1 --- Formaldehyde agarose gel electrophoresis of total RNA --- p.58 / Chapter 2.14.2.2 --- Preparation of DIG-labeled RNA probes for hybridization --- p.59 / Chapter 2.14.2.3 --- Preparation of PCR DIG-labeled cDNA probes for hybridization --- p.60 / Chapter 2.14.2.4 --- Hybridization and colour development --- p.60 / Chapter Chapter 3 --- Results --- p.62 / Chapter 3.1 --- Confirmation of genotypes by PCR --- p.62 / Chapter 3.2 --- Body weight changes --- p.62 / Chapter 3.3 --- Organ weight changes --- p.67 / Chapter 3.4 --- Serum cholesterol and triglyceride levels --- p.70 / Chapter 3.5 --- Liver histology --- p.78 / Chapter 3.6 --- Reverse transcription (RT) of mRNA and non-fluorescent PCR (non-flurroDD PCR) --- p.114 / Chapter 3.7 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.125 / Chapter 3.8 --- Reamplification of fluorescent differential display (FDD) fragments --- p.138 / Chapter 3.9 --- Subcloning of reamplifled FDD fragments --- p.162 / Chapter 3.10 --- Sequencing of subcloned cDNA fragments --- p.176 / Chapter 3.11 --- Northern blot analysis of sequenced cDNA fragments --- p.195 / Chapter Chapter 4 --- Discussion --- p.250 / Chapter 4.1 --- Body weight changes --- p.250 / Chapter 4.2 --- Organ weight changes --- p.251 / Chapter 4.3 --- Serum cholesterol and triglyceride levels --- p.253 / Chapter 4.4 --- Liver histology --- p.254 / Chapter 4.5 --- "Functions and roles of identified PPARa-dependent and Wy-14,643- responsive genes" --- p.255 / Chapter 4.6 --- Mechanism of PP-induced hepatocarcinogeneis --- p.270 / Chapter Chapter 5 --- Conclusions --- p.274 / References --- p.276 / Appendix A Tables of preparation of reaction mix --- p.285 / Table A1. Preparation of animal tail genotyping PCR reaction --- p.285 / Table A2. Preparation of DNase I treatment --- p.285 / Table A3. Preparation of reverse transcription of non-fluoroDD and fluoroDD --- p.285 / Table A4. Preparation of non-fluoroDD and fluoroDD RT-PCR --- p.286 / Table A5. Preparation of reamplification of differentially expressed cDNA fragments --- p.286 / Table A6. Preparation of PCR reaction for DNA sequencing --- p.286 / Table A7. Preparation of PCR reaction for RNA probe --- p.287 / Table A8. Preparation of PCR reaction for cDNA probe --- p.287 / Appendix B DNA sequences and sequencing alignments of FluoroDD Fragments --- p.288 / Chapter B 1.1: --- DNA sequence of cDNA subclone AA1#2 (AP1 & ARP2) using M13 forward (-20) primer --- p.288 / Chapter B 1.2: --- "Sequencing alignment of cDNA subclone AA1#2 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.288 / Chapter B 1.3: --- Summary of sequence alignment of cDNA subclone AA1#2 with mouse Peci --- p.288 / Chapter B 2.1: --- DNA sequence of cDNA subclone AA1#3 (AP1 & ARP2) using M13 forward (-20) primer --- p.289 / Chapter B 2.2: --- "Sequencing alignment of cDNA subclone AA1#3 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.289 / Chapter B 2.3: --- Summary of sequence alignment of cDNA subclone AA1#3 with mouse Peci --- p.289 / Chapter B 3.1: --- DNA sequence of cDNA subclone AA1#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.290 / Chapter B 3.2: --- "Sequencing alignment of cDNA subclone AA1#4 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.290 / Chapter B 3.3: --- Summary of sequence alignment of cDNA subclone AA1#4 with mouse Peci --- p.290 / Chapter B 4.1: --- DNA sequence of cDNA subclone AA1#20 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.291 / Chapter B 4.2: --- "Sequencing alignment of cDNA subclone AA1#20 with mouse peroxisomal delta 3, delta 2- enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.291 / Chapter B 4.3: --- Summary of sequence alignment of cDNA subclone AA1#20 with mouse Peci --- p.291 / Chapter B 5.1: --- DNA sequence of cDNA subclone AA4#1 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.292 / Chapter B 5.2: --- Sequencing alignment of cDNA subclone AA4#1 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.292 / Chapter B 5.3: --- Summary of sequence alignment of cDNA subclone AA4#1 with mouse Apoa5 --- p.292 / Chapter B 6.1: --- DNA sequence of cDNA subclone AA4#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.293 / Chapter B 6.2: --- Sequencing alignment of cDNA subclone AA4#9 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.293 / Chapter B 6.3: --- Summary of sequence alignment of cDNA subclone AA4#9 with mouse Apoa5 --- p.293 / Chapter B 7.1: --- DNA sequence of cDNA subclone AA5#5 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.294 / Chapter B 7.2: --- Sequencing alignment of cDNA subclone AA5#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.294 / Chapter B 7.3: --- Summary of sequence alignment of cDNA subclone AA5#5 with mouse mitochondrion --- p.294 / Chapter B 8.1: --- DNA sequence of cDNA subclone AA6#1 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.295 / Chapter B 8.2: --- Sequencing alignment of cDNA subclone AA6#1 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.295 / Chapter B 8.3: --- Summary of sequence alignment of cDNA subclone AA6#1 with mouse mitochondion --- p.295 / Chapter B 9.1: --- DNA sequence of cDNA subclone AA6#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.296 / Chapter B 9.2: --- Sequencing alignment of cDNA subclone AA6#9 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.296 / Chapter B 9.3: --- Summary of sequence alignment of cDNA subclone AA6#9 with mouse mitochondrion --- p.296 / Chapter B 10.1: --- DNA sequence of cDNA subclone AA7#3 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.297 / Chapter B 10.2: --- Sequencing alignment of cDNA subclone AA7#3 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.297 / Chapter B 10.3: --- Summary of sequence alignment of cDNA subclone AA7#3 with mouse mitochondrion --- p.297 / Chapter B 11.1: --- DNA sequence of cDNA subclone AA7#5 (AP 1 & ARP2) using Ml3 reverse primer --- p.298 / Chapter B 11.2: --- Sequencing alignment of cDNA subclone AA7#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.298 / Chapter B 11.3: --- Summary of sequence alignment of cDNA subclone AA7#5 with mouse mitochondrion --- p.298 / Chapter B 12.1: --- DNA sequence of cDNA subclone AA10#1 (AP1 & ARP2) using M l3 forward (-20) primer --- p.299 / Chapter B 12.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.299 / Chapter B 12.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.299 / Chapter B 13.1: --- DNA sequence of cDNA subclone AA10#1 (AP 1 & ARP2) using M13 reverse primer --- p.300 / Chapter B 13.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.300 / Chapter B 13.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.300 / Chapter B 14.1: --- DNA sequence of cDNA subclone AA12#4 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.301 / Chapter B 14.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.301 / Chapter B 14.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.301 / Chapter B 15.1: --- DNA sequence of cDNA subclone AA12#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.302 / Chapter B 15.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.302 / Chapter B 15.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.302 / Chapter B 16.1: --- DNA sequence of cDNA subclone AB7#2 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.303 / Chapter B 16.2: --- "Sequencing alignment of cDNA subclone AB7#2 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.303 / Chapter B 16.3: --- Summary of sequence alignment of cDNA subclone AB7#2 with mouse UGT2b5 --- p.303 / Chapter B 17.1: --- DNA sequence of cDNA subclone AB7#8 (AP3 & ARP3) using M13 reverse primer --- p.304 / Chapter B 17.2: --- "Sequencing alignment of cDNA subclone AB7#8 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.304 / Chapter B 17.3: --- Summary of sequence alignment of cDNA subclone AB7#8 with mouse UGT2b5 --- p.304 / Chapter B 18.1: --- DNA sequence of cDNA subclone AB17#16 (AP3 & ARP3) using M13 reverse primer --- p.305 / Chapter B 18.2: --- Sequencing alignment of cDNA subclone AB17#16 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.305 / Chapter B 18.3: --- Summary of sequence alignment of cDNA subclone AB17#16 with mouse mitochondrion --- p.305 / Chapter B 19.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 forward (-20) primer --- p.306 / Chapter B 19.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.306 / Chapter B 20.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 reverse primer --- p.307 / Chapter B 20.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.307 / Chapter B 20.3: --- Summary of sequence alignment of cDNA subclone AB 18#4 with mouse mitochondrion --- p.307 / Chapter B 21.1: --- DNA sequence of cDNA subclone AB19#2 (AP3 & ARP3) using M13 forward (-20) primer --- p.308 / Chapter B 21.2: --- Sequencing alignment of cDNA subclone AB 19#2 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.308 / Chapter B 21.3: --- Summary of sequence alignment of cDNA subclone AB19#2 with mouse mitochondrion --- p.308 / Chapter B 22.1: --- DNA sequence of cDNA subclone AB19#10 (AP3 & ARP3) using Ml3 reverse primer --- p.309 / Chapter B 22.2: --- Sequencing alignment of cDNA subclone AB 19#10 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.309 / Chapter B 22.3: --- Summary of sequence alignment of cDNA subclone AB19#10 with mouse mitochondrion --- p.309 / Chapter B 23.1: --- DNA sequence ofcDNA subclone AB22#9 (AP3 & ARP3) using M13 forward (-20) primer --- p.310 / Chapter B 23.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.310 / Chapter B 23.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.310 / Chapter B 24.1: --- DNA sequence of cDNA subclone AB22#9 (AP3 & ARP3) using Ml3 reverse primer --- p.311 / Chapter B 24.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.311 / Chapter B 24.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.311 / Chapter B 25.1: --- DNA sequence ofcDNA subclone AB24#9 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.312 / Chapter B 25.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.312 / Chapter B 25.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.312 / Chapter B 26.1: --- DNA sequence of cDNA subclone AB24#9 (AP3 & ARP3) using M13 reverse primer --- p.313 / Chapter B 26.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.313 / Chapter B 26.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.313 / Chapter B 27.1: --- DNA sequence of cDNA subclone AB25#6 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.314 / Chapter B 27.2: --- Sequencing alignment of cDNA subclone AB25#6 with mouse Cyp4a l4 by BLAST searching against the National Center for Biotechnology Information database --- p.314 / Chapter B 27.3: --- Summary of sequence alignment of cDNA subclone AB25#6 with mouse Cyp4al4 --- p.314 / Chapter B 28.1: --- DNA sequence of cDNA subclone AB26#17 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.315 / Chapter B 28.2: --- Sequencing alignment of cDNA subclone AB26#17 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.315 / Chapter B 28.3: --- Summary of sequence alignment of cDNA subclone AB26#17 with mouse Cyp4al4 --- p.315 / Chapter B 29.1: --- DNA sequence of cDNA subclone AB26#3Q (AP3 & ARP3) using M13 reverse primer --- p.316 / Chapter B 29.2: --- Sequencing alignment of cDNA subclone AB26#30 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.316 / Chapter B 29.3: --- Summary of sequence alignment of cDNA subclone AB26#30 with mouse Cyp4al4 --- p.316 / Chapter B 30.1: --- DNA sequence of cDNA subclone AB29#7 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.317 / Chapter B 30.2: --- Sequencing alignment of cDNA subclone AB29#7 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.317 / Chapter B 30.3: --- Summary of sequence alignment of cDNA subclone AB29#7 with mouse catalase --- p.317 / Chapter B 31.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.318 / Chapter B 31.2: --- Sequencing alignment of cDNA subclone AC1#1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.318 / Chapter B 31.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.318 / Chapter B 32.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP 19) using Ml3 reverse primer --- p.319 / Chapter B 32.2: --- Sequencing alignment of cDNA subclone AC 1# 1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.319 / Chapter B 32.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.319 / Chapter B 33.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 forward (-20) primer --- p.320 / Chapter B 33.2: --- Sequencing alignment of cDNA subclone AC 1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.320 / Chapter B 33.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.320 / Chapter B 34.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 reverse primer --- p.321 / Chapter B 34.2: --- Sequencing alignment of cDNA subclone AC1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.321 / Chapter B 34.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.321 / Chapter B 35.1: --- DNA sequence ofcDNA subclone AC2#2 (AP2 & ARP19) using Ml3 reverse primer --- p.322 / Chapter B 35.2: --- Sequencing alignment of cDNA subclone AC2#2 with mouse bifunctional enzyme (PBFE) by BLAST searching against the National Center for Biotechnology Information database --- p.322 / Chapter B 35.3: --- Summary of sequence alignment of cDNA subclone AC2#2 with mouse PBFE --- p.322 / Chapter B 36.1: --- DNA sequence of cDNA subclone AC2#5 (AP2 & ARP19) using Ml3 reverse primer --- p.323 / Chapter B 36.2: --- Sequencing alignment of cDNA subclone AC2#5 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.323 / Chapter B 36.3: --- Summary of sequence alignment of cDNA subclone AC2#5 with mouse catalase --- p.323 / Chapter B 37.1: --- DNA sequence of cDNA subclone AC2#6 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.324 / Chapter B 37.2: --- Sequencing alignment of cDNA subclone AC2#6 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.324 / Chapter B 37.3: --- Summary of sequence alignment of cDNA subclone AC2#6 with mouse SPI --- p.324 / Chapter B 38.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.325 / Chapter B 38.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse Cyp2a5 by BLAST searching against the National Center for Biotechnology Information database --- p.325 / Chapter B 38.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse Cyp2a5 --- p.325 / Chapter B 39.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP 19) using M13 reverse primer --- p.326 / Chapter B 39.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.326 / Chapter B 39.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse SPI --- p.326 / Chapter B 40.1: --- DNA sequence of cDNA subclone AC7#5 (AP2& ARP 19) using M13 forward (-20) primer --- p.327 / Chapter B 40.2: --- Sequencing alignment of cDNA subclone AC7#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.327 / Chapter B 40.3: --- Summary of sequence alignment of cDNA subclone AC7#5 with mouse SPI --- p.327 / Chapter B 41.1: --- DNA sequence of cDNA subclone AD6#4 (AP2 & ARP 18) using Ml3 reverse primer --- p.328 / Chapter B 41.2: --- Sequencing alignment of cDNA subclone AD6#4 with mouse N-terminal Asn amidase (Ntanl) by BLAST searching against the National Center for Biotechnology Information database --- p.328 / Chapter B 41.3: --- Summary of sequence alignment of cDNA subclone AD6#4 with mouse Ntanl --- p.328 / Chapter B 42.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.329 / Chapter B 42.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.329 / Chapter B 42.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cvp4al0 --- p.329 / Chapter B 43.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP18) using M13 reverse primer --- p.330 / Chapter B 43.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.330 / Chapter B 43.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cyp4al0 --- p.330 / Chapter B 44.1: --- DNA sequence of cDNA subclone AD8#2 (AP2 & ARP 18) using M13 forward (-20) primer --- p.331 / Chapter B 44.2: --- Sequencing alignment of cDNA subclone AD8#2with mouse Cyp4a l0 by BLAST searching against the National Center for Biotechnology Information database --- p.331 / Chapter B 44.3: --- Summary of sequence alignment of cDNA subclone AD8#2 with mouse Cvp4a10 --- p.331 / Chapter B 45.1: --- DNA sequence ofcDNA subclone AD8#7 (AP2 & ARP18) using Ml3 reverse primer --- p.332 / Chapter B 45.2: --- Sequencing alignment of cDNA subclone AD8#7 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.332 / Chapter B 45.3: --- Summary of sequence alignment of cDNA subclone AD8#7 with mouse Cyp4a10 --- p.332 / Chapter B 46.1: --- DNA sequence of cDNA subclone AD9#2 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.333 / Chapter B 46.2: --- Sequencing alignment of cDNA subclone AD9#2 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.333 / Chapter B 46.3: --- Summary of sequence alignment of cDNA subclone AD9#2 with mouse Cyp4al0 --- p.333 / Chapter B 47.1: --- DNA sequence of cDNA subclone AD9#3 (AP2 & ARP 18) using M13 reverse primer --- p.334 / Chapter B 47.2: --- Sequencing alignment of cDNA subclone AD9#3 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.334 / Chapter B 47.3: --- Summary of sequence alignment of cDNA subclone AD9#3 with mouse Cvp4a10 --- p.334 / Chapter B 48.1: --- DNA sequence ofcDNA subclone AF1#8 (AP10 & ARP13) using M13 forward (-20) primer --- p.335 / Chapter B 48.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.335 / Chapter B 48.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.335 / Chapter B 49.1: --- DNA sequence of cDNA subclone AF1#8 (AP 10 & ARP 13) using Ml3 reverse primer --- p.336 / Chapter B 49.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.336 / Chapter B 49.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.336 / Chapter B 50.1: --- DNA sequence of cDNA subclone AF21#5 (AP 10 & ARP 13) using M13 reverse primer --- p.337 / Chapter B 50.2: --- "Sequencing alignment ofcDNA subclone AF21#5 with mouse cell death-inducing DNA fragmentation factor, alpha subunit-like effector B (Cideb) by BLAST searching against the National Center for Biotechnology Information database" --- p.337 / Chapter B 50.3: --- Summary of sequence alignment of cDNA subclone AF21#5 with mouse Cideb --- p.337 / Chapter B 51.1: --- DNA sequence ofcDNA subclone AF25#6 (AP10 & ARP13) using M13 forward (-20) primer --- p.338 / Chapter B 51.2: --- Sequencing alignment of cDNA subclone AF25#6 with mouse major urinary protein 2 (MUPII) by BLAST searching against the National Center for Biotechnology Information database --- p.338 / Chapter B 51.3: --- Summary of sequence alignment of cDNA subclone AF25#6 with mouse MUP II --- p.338 / Chapter B 52.1: --- DNA sequence of cDNA subclone AF25#7 (AP 10 & ARP 13) using Ml3 reverse primer --- p.339 / Chapter B 52.2: --- Sequencing alignment of cDNA subclone AF25#7 with mouse major urinary protein 2 (MUP II) by BLAST searching against the National Center for Biotechnology Information database --- p.339 / Chapter B 52.3: --- Summary of sequence alignment of cDNA subclone AF25#7 with mouse MUPII --- p.339 / Chapter B 53.1: --- DNA sequence ofcDNA subclone AF30#4 (AP10 & ARP13) using M13 forward (-20) primer --- p.340 / Chapter B 53.2: --- Sequencing alignment of cDNA subclone AF30#4 with mouse mRNA for suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.340 / Chapter B 53.3: --- Summary of sequence alignment of cDNA subclone AF3Q#4 with mouse SAC1 --- p.340 / Chapter B 54.1: --- DNA sequence of cDNA subclone AF30#5 (AP 10 & ARP 13) using Ml3 reverse primer --- p.341 / Chapter B 54.2: --- Sequencing alignment of cDNA subclone AF30#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.341 / Chapter B 54.3: --- Summary of sequence alignment of cDNA subclone AF30#5 with mouse mitochondrion --- p.341 / Chapter B 55.1: --- DNA sequence ofcDNA subclone AH1#6 (AP11 & ARP19) using M13 forward (-20) primer --- p.342 / Chapter B 55.2: --- Sequencing alignment of cDNA subclone AH1#6 with mouse EST by BLAST searching against the National Center for Biotechnology Information database --- p.342 / Chapter B 55.3: --- Summary of sequence alignment of cDNA subclone AH1#6 with mouse EST --- p.342 / Chapter B 56.1: --- DNA sequence of cDNA subclone AIl#5 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.343 / Chapter B 56.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.343 / Chapter B 56.3: --- Summary of sequence alignment of cDNA subclone All#5 with mouse SPI --- p.343 / Chapter B 57.1: --- DNA sequence of cDNA subclone AI1#5 (AP6 & ARP4) using Ml3 reverse primer --- p.344 / Chapter B 57.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST --- p.344 / Chapter B 57.3: --- Summary of sequence alignment of cDNA subclone AIl #5 with mouse SPI --- p.344 / Chapter B 58.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.345 / Chapter B 58.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.345 / Chapter B 58.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.345 / Chapter B 59.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using M13 reverse primer --- p.346 / Chapter B 59.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.346 / Chapter B 59.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.346 / Chapter B 60.1: --- DNA sequence ofcDNA subclone AJ1#4 (AP6 & ARP14) using Ml3 forward (-20) primer --- p.347 / Chapter B 60.2: --- Sequencing alignment of cDNA subclone AJ1#4 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.347 / Chapter B 60.3: --- Summary of sequence alignment of cDNA subclone AJ1#4 with mouse carboxylesterase --- p.347 / Chapter B 61.1: --- DNA sequence ofcDNA subclone AJ1#5 (AP6 & ARP14) using Ml3 reverse primer --- p.348 / Chapter B 61.2: --- Sequencing alignment of cDNA subclone AJ1#5 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.348 / Chapter B 61.3: --- Summary of sequence alignment of cDNA subclone AJ1#5 with mouse carboxylesterase --- p.348 / Chapter B 62.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using M13 forward (-20) primer --- p.349 / Chapter B 62.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.349 / Chapter B 62.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.349 / Chapter B 63.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using Ml3 reverse primer --- p.350 / Chapter B 63.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.350 / Chapter B 63.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.350 / Chapter B 64.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP 14) using Ml3 forward (-20) primer --- p.351 / Chapter B 64.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.351 / Chapter B 64.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse catalase --- p.351 / Chapter B 65.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP14) using Ml3 reverse primer --- p.352 / Chapter B 65.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.352 / Chapter B 65.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse SAC1 --- p.352 / Chapter B 66.1: --- DNA sequence ofcDNA subclone AL2#8 (AP7 & ARP15) using M13 forward (-20) primer --- p.353 / Chapter B 66.2: --- Sequencing alignment of cDNA subclone AL2#8 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pil) by BLAST searching against the National Center for Biotechnology Information database --- p.353 / Chapter B 66.3: --- Summary of sequence alignment of cDNA subclone AL2#8 with mouse HSD17β11 --- p.353 / Chapter B 67.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using Ml3 forward (-20) primer --- p.354 / Chapter B 67.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pll) by BLAST searching against the National Center for Biotechnology Information database --- p.354 / Chapter B 67.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.354 / Chapter B 68.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using M13 reverse primer --- p.355 / Chapter B 68.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxysteroid (17-beta) dehydrogenase 11 (Hsdl7β1l) by BLAST searching against the National Center for Biotechnology Information database --- p.355 / Chapter B 68.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.355 / Chapter B 69.1: --- DNA sequence of cDNA subclone AO1#2 (AP5 & ARP 10) 356 using Ml3 forward (-20) primer --- p.356 / Chapter B 69.2: --- Sequencing alignment of cDNA subclone AO1#2 with mouse 356 adipose differentiation related protein (ADFP) by BLAST searching against the National Center for Biotechnology Information database --- p.356 / Chapter B 69.3: --- Summary of sequence alignment of cDNA subclone AO1 #2 with 356 mouse ADFP --- p.356 / Chapter B 70.1: --- DNA sequence ofcDNA subclone AO1#5 (AP5 & ARP10) 357 using M13 reverse primer --- p.357 / Chapter B 70.2: --- Sequencing alignment of cDNA subclone AO1#5 with mouse 357 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.357 / Chapter B 70.3: --- Summary of sequence alignment of cDNA subclone AO1 #5 with 357 mouse Crot --- p.357 / Chapter B 71.1: --- DNA sequence ofcDNA subclone AO2#6 (AP5 & ARP10) 358 using Ml3 forward (-20) primer --- p.358 / Chapter B 71.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 358 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.358 / Chapter B 71.3: --- Summary of sequence alignment of cDNA subclone AO2#6 358 with mouse Rnase4 --- p.358 / Chapter B 72.1: --- DNA sequence of cDNA subclone AO2#6 (AP5 & ARP 10) 359 using Ml3 reverse primer --- p.359 / Chapter B 72.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 359 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.359 / Chapter B 72.3: --- Summary of sequence alignment of cDNA subclone A02#6 359 with mouse Rnase4 --- p.359 / Chapter B 73.1: --- DNA sequence ofcDNA subclone AO2#8 (AP5 & ARP10) 360 using Ml3 reverse primer --- p.360 / Chapter B 73.2: --- Sequencing alignment of cDNA subclone A02#8 with mouse 360 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.360 / Chapter B 73.3: --- Summary of sequence alignment of cDNA subclone AO2#8 with 360 mouse Crot --- p.360 / Chapter B 74.1: --- DNA sequence ofcDNA subclone AO8#2 (AP5 & ARP10) 361 using M13 forward (-20) primer --- p.361 / Chapter B 74.2: --- Sequencing alignment of cDNA subclone A08#2 with mouse 361 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.361 / Chapter B 74.3: --- Summary of sequence alignment of cDNA subclone AO8#2 with 361 mouse Rnase4 --- p.361 / Chapter B 75.1: --- DNA sequence of cDNA subclone AP4#4 (AP12 & ARP2) 362 using Ml3 forward (-20) primer --- p.362 / Chapter B 75.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 362 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.362 / Chapter B 75.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 362 mouse mitochondrion --- p.362 / Chapter B 76.1: --- DNA sequence ofcDNA subclone AP4#4 (AP12 & ARP2) 363 using Ml3 reverse primer --- p.363 / Chapter B 76.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 363 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.363 / Chapter B 76.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 363 mouse mitochondrion --- p.363
|
105 |
Promoter hypermethylation of tumor related genes in the progression of colorectal neoplasia.January 2005 (has links)
Bai Hsing Chen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 89-94). / Abstracts in English and Chinese. / Acknowledgments --- p.ii / Publication --- p.iii / List of Abbreviations --- p.iv / List of Tables --- p.v / List of Figures --- p.vi / Abstract --- p.vii / 摘要 --- p.x / Table of Contents --- p.xii / Chapter Chapter 1 --- INTRODUCTION / Chapter 1.1 --- Molecular Biology in Cancer Development --- p.2 / Chapter 1.1.1 --- Cell Cycle and Cancer --- p.2 / Chapter 1.1.2 --- Oncogenes and Tumor Suppressor Genes --- p.4 / Chapter 1.1.3 --- Epigenetic Alteration in Tumor Cells --- p.6 / Chapter 1.2 --- Colorectal Cancer Development --- p.9 / Chapter 1.2.1 --- Epidemiology of Colorectal Cancer --- p.9 / Chapter 1.2.2 --- Adenoma-Carcinoma Sequence --- p.11 / Chapter 1.2.2.1 --- Hyperplastic (metaplastic) Polyps --- p.11 / Chapter 1.2.2.2 --- Aberrant Crypt Foci (ACF) --- p.13 / Chapter 1.2.2.3 --- Adenomas --- p.13 / Chapter 1.2.2.4 --- Serrated adenomas --- p.15 / Chapter 1.2.2.5 --- Colorectal Carcinomas --- p.16 / Chapter 1.2.3 --- Genetic alterations in CRC --- p.18 / Chapter 1.2.4 --- Epigenetic alterations in CRC --- p.21 / Chapter 1.2.5 --- Staging of Colorectal Cancer --- p.23 / Chapter 1.3 --- Hypothesis --- p.25 / Chapter 1.4 --- Aim of Study --- p.26 / Chapter Chapter 2 --- MATERIALS and METHODES / Chapter 2.1 --- Patient Populations --- p.28 / Chapter 2.2 --- Microdissection and Immunohistochemistry --- p.29 / Chapter 2.3 --- DNA Isolation and Modification --- p.31 / Chapter 2.3.1 --- DNA Extraction from Microdissected Tissues --- p.31 / Chapter 2.3.2 --- DNA Extraction from Frozen Biopsy --- p.31 / Chapter 2.3.3 --- Bisulfite Modification of DNA --- p.32 / Chapter 2.4 --- Detection of K-ras Mutation --- p.33 / Chapter 2.5 --- Methylation-specific PCR (MSP) --- p.36 / Chapter 2.6 --- Bisulfite DNA Sequencing --- p.42 / Chapter 2.7 --- Statistical analysis --- p.44 / Chapter Chapter 3 --- RESULTS / Chapter 3.1 --- Promoter Hypermethylation of Tumor Related Genes in the Progression of Colorectal Neoplasia --- p.46 / Chapter 3.1.1 --- Clinico-Pathological parameters --- p.46 / Chapter 3.1.2 --- "Frequencies of Promoter Hypermethylation in Colorectal Cancers, Adenomas and Normal Colonic Tissues" --- p.47 / Chapter 3.1.3 --- Promoter Hypermethylation in Multiple Genes --- p.50 / Chapter 3.1.4 --- Promoter Hypermethylation in Advanced vs. Non-advanced Adenoma --- p.50 / Chapter 3.1.5 --- Methylation Patterns in Paired Adjacent Tissues from Cancer Patients --- p.53 / Chapter 3.1.6 --- Immunohistochemistry --- p.55 / Chapter 3.1.7 --- K-ras mutation --- p.61 / Chapter 3.1.8 --- Clinicopathological Correlations with Promoter Hypermethylation --- p.64 / Chapter 3.2 --- DNA Methylation Spread within HLTF CpG Island in Colorectal neoplasia --- p.67 / Chapter Chapter 4 --- DISCUSSION / Chapter 4.1 --- Methylation is an early event in Colorectal Carcinogenesis --- p.72 / Chapter 4.1.1 --- Methylation is frequently detected in both adenoma and carcinoma --- p.74 / Chapter 4.1.2 --- Concurrent methylation in multiple genes --- p.76 / Chapter 4.1.3 --- Methylation in advanced and non-advanced colorectal adenomas --- p.76 / Chapter 4.1.4 --- Relationship between K-ras mutation and methylation --- p.78 / Chapter 4.1.5 --- Methylation in adjacent tissues --- p.80 / Chapter 4.2 --- DNA Methylation Spread in HLTF gene --- p.81 / Chapter 4.2.1 --- HLTF is Frequently Methylated in Gastrointestinal Neoplasm --- p.82 / Chapter 4.2.2 --- Methylation Spread Patterns in Cancers and Adenomas --- p.83 / Chapter 4.2.3 --- Age Dependent Methylation Spread --- p.85 / Chapter Chapter 5 --- CONCLUSION --- p.87 / References --- p.89
|
106 |
Gene expression patterns in human ovarian cancer and mouse embryos.January 1997 (has links)
by Cheung Kwok Kuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 111-130). / Chapter Chapter 1 --- General introduction of human ovarian cancer / Chapter 1.1 --- Epidemiology --- p.1 / Chapter 1.2 --- Symptoms and diagnosis --- p.4 / Chapter 1.3 --- Etiology --- p.5 / Chapter 1.3.1 --- Factors associated with decreased risks --- p.6 / Chapter 1.3.2 --- Factors associated with increased risks --- p.8 / Chapter 1.4 --- Classification of ovarian cancer --- p.12 / Chapter 1.5 --- Molecular basis of ovarian cancer --- p.18 / Chapter 1.6 --- Project aim --- p.29 / Chapter Chaper 2 --- "DOC-2, a differentially expressed gene in human ovarian cancer" / Chapter 2.1 --- Introduction --- p.32 / Chapter 2.2 --- Materials and Methods --- p.35 / Chapter 2.2.1 --- Expression of DOC-2 in human ovarian tissues --- p.35 / Chapter 2.2.1.1 --- Preparation of specimen --- p.35 / Chapter 2.2.1.2 --- Immunohistochemical studies of the expression of DOC-2 protein in human ovarian tissues --- p.35 / Chapter 2.2.1.3 --- Quantitation of immunoreactivity --- p.38 / Chapter 2.2.2 --- Effect of DOC-2 transfection on growth rate of the ovarian cancer cell lineSKOV3 --- p.39 / Chapter 2.2.2.1 --- Cell line --- p.39 / Chapter 2.2.2.2 --- Transfection of DOC-2 to SKOV3 ovarian carcinoma cell line --- p.39 / Chapter 2.2.2.3 --- Growth curve of the transfected ovarian carcinoma cell lines --- p.40 / Chapter 2.2.3 --- In vivo tumorigenicity study --- p.42 / Chapter 2.3 --- Results --- p.44 / Chapter 2.3.1 --- Expression of DOC-2 in human ovarian tissues --- p.44 / Chapter 2.3.2 --- Effects of DOC-2 transfected gene on the growth rate of the human ovarian cancer cell line SKOV3 --- p.46 / Chapter 2.3.2.1 --- Standard curves for calculating cell density from absorbance --- p.46 / Chapter 2.3.2.2 --- The effect of DOC-2 transfection on the growth rate of the human ovarian cancer cell line SKOV3 --- p.47 / Chapter 2.3.3 --- In vivo tumorigenicity --- p.48 / Chapter 2.4 --- Discussion --- p.50 / Chapter Chapter 3 --- DOC-2 expression in mouse embryonic development / Chapter 3.1 --- Introduction --- p.56 / Chapter 3.2 --- Materials and Methods --- p.60 / Chapter 3.2.1 --- Expression of murine homolog of DOC-2 (p96) during mouse embryonic development --- p.60 / Chapter 3.2.1.1 --- Preparation of paraffin-embedded mouse embryo sections --- p.60 / Chapter 3.2.1.2 --- Preparation of OCT-embedded mouse embryo sections --- p.61 / Chapter 3.2.1.3 --- Immunohistochemistry of murine homolog of DOC-2 (p96) on mouse embryos --- p.61 / Chapter 3.2.2 --- Effect of antibody blocking for DOC-2 protein on the growth of embryonic kidney in vitro --- p.62 / Chapter 3.3 --- Results --- p.64 / Chapter 3.4 --- Discussion --- p.69 / Chapter Chapter 4 --- Apoptosis / Chapter 4.1 --- Introduction --- p.72 / Chapter 4.1.1 --- Current methods for the detection of apoptosis --- p.74 / Chapter 4.1.1.1 --- Agarose gel electrophoresis --- p.75 / Chapter 4.1.1.2 --- Flow cytometric analysis --- p.76 / Chapter 4.1.1.3 --- 3-OH end labelling --- p.77 / Chapter 4.1.1.4 --- Nuclease assay --- p.78 / Chapter 4.1.2 --- Apoptosis in normal physiology and oncogenesis --- p.78 / Chapter 4.1.3 --- p53 and apoptosis --- p.80 / Chapter 4.1.4 --- bcl-2 and apoptosis --- p.83 / Chapter 4.2 --- Materials and Methods --- p.92 / Chapter 4.2.1 --- Expression of p53 and bcl-2 in human ovarian tissues --- p.92 / Chapter 4.2.1.1 --- Preparation of specimens --- p.92 / Chapter 4.2.1.2 --- Immunohistochemical studies of the expression of p53 and bcl-2 proteins in ovarian tissue --- p.92 / Chapter 4.2.2 --- In stiu terminal transferase-mediated dUTP nick and labelling (TUNEL) --- p.94 / Chapter 4.3 --- Results --- p.96 / Chapter 4.3.1 --- Expression of p53 and bcl-2 in human ovarian tissues --- p.96 / Chapter 4.3.2 --- Apoptosis in human ovarian tissues --- p.99 / Chapter 4.4 --- Discussion --- p.101 / Chapter Chapter 5 --- Concluding Remarks --- p.108 / References --- p.111 / Appendix --- p.131 / Figures and legend --- p.138
|
107 |
Epigenetic identification of paired box gene 5 as a functional tumor suppressor associated with poor prognosis in patients with gastric cancer. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Background & aims. DNA methylation induced tumor suppressor gene silencing plays an important role in carcinogenesis. By using methylation-sensitive representational difference analysis, we identified paired box gene 5 (PAX5) being methylated in human cancer. PAX5 locates at human chromosome 9p13.2 and encodes a 391 amino acids transcription factor. However, the role of PAX5 in gastric cancer is still unclear. Hence, we analyzed its epigenetic inactivation, biological functions, and clinical implications in gastric cancer. / Conclusions. Our results demonstrated that PAX5 promoter methylation directly mediates its transcriptional silence and commonly occurs in gastric cancer. PAX5 gene can act as a functional tumor suppressor in gastric carcinogenesis by playing an important role in suppression of cell proliferation, migration, invasion, and induction of cell apoptosis. Detection of methylated PAX5 may be utilized as a biomarker for the prognosis of gastric cancer patients. / Methods. Methylation status of PAX5 promoter in gastric cancer cell lines and clinical samples was evaluated by methylation specific polymerase chain reaction (MSP) and bisulfite genomic sequencing (BGS). The effects of PAX5 re-expression in cancer cell lines were determined in proliferation, cell cycle, apoptosis, migration and invasion assays. Its in vivo tumorigenicity was investigated by injecting cancer cells with PAX5 expression vector subcutaneously into the dorsal flank of nude mice. Chromosome Immunoprecipitation (ChIP) and cDNA expression array were performed to reveal the molecular mechanism of the biological function of PAX5. / Results. PAX5 was silenced or down-regulated in seven out of eight of gastric cancer cell lines examined. A significant down-regulation was also detected in paired gastric tumors compared with their adjacent non-cancer tissues (n = 18, P = 0.0196). In contrast, PAX5 is broadly expressed in all kinds of normal adult and fetal tissues. The gene expression of PAX5 in the gastric cancer cell line is closely linked to the promoter hypermethylation status. In addition, the expression levels could be restored by exposure to demethylating agents 5-aza-21-deoxycytidine. Re-expression of PAX5 in AGS, BGC823 and HCT116 cancer cells reduced colony formation (P < 0.01) and cell viability (P < 0.05), arrested cell cycle in G0/G1 phase (P = 0.0055), induced cell apoptosis (P < 0.05), repressed cell migration and invasion (P = 0.0218) in vitro. It also inhibited tumor growth in nude mice (P < 0.05). The molecular basis of its function were investigated by cDNA expression array and demonstrated that ectopic expression of PAX5 up-regulated tumor suppressor gene P53, anti-proliferation gene P21, pro-apoptosis gene BAX, anti-invasion gene MTSS1 and TIMP1; and down-regulated anti-apoptosis gene BCL2, cell cycle regulator cyclinD1, migration related gene MET and MMP1. ChIP assay indicated that P53 and MET are direct transcriptional target of PAX5. Moreover, PAX5 hypermethylation was detected in 90% (145 of 161) of primary gastric cancers compared with 16% (3 of 19) of non-cancer tissues (P < 0.0001). After a median follow-up period of 15.4 months, multivariate analysis revealed that gastric cancer patients with PAX5 methylation had a significant poor overall survival compared with the unmethylated cases (P = 0.0201). / Li, Xiaoxing. / Advisers: Hsiang Fu Kung; Jun Yu. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 134-159). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
108 |
Gene expression profiling of Met receptor tyrosine kinase-induced mouse mammary tumorsPonzo, Marisa Grace, 1980- January 2009 (has links)
Breast cancer is a heterogeneous disease comprised of distinct biological entities that correlate with diverse clinical outcomes. Gene expression profiling has divided this heterogeneity into luminal, ERBB2+ and basal molecular subtypes. Basal breast cancers are difficult to treat as they lack expression of candidates suitable for targeted therapies and are associated with poor outcome. / Elevated protein level of the hepatocyte growth factor receptor, MET, is observed in 20% of human breast cancers and correlates with poor prognosis. However, the role of MET in mammary tumorigenesis is poorly understood. To address this, we generated a murine model that expresses weakly oncogenic mutants of Met (Metmt) in the mammary epithelium under the transcriptional control of the mouse mammary tumor virus promoter. We demonstrate that Metmt induces mammary carcinomas with diverse phenotypes and used gene expression microarrays to elucidate gene expression changes induced by Met. Since mammary tumors contained variable contents of epithelium and stroma, we used laser capture microdissection to procure epithelial cells for microarray analysis. Based on immunohistochemistry and expression profiling, we show that Metmt produces tumors with luminal or basal characteristics. From hierarchical clustering, Metmt-induced basal tumors clustered with murine models that share features of epithelial to mesenchymal transition and human basal breast cancers. Moreover, Metmt basal tumors clustered with human basal breast cancer. The status of MET among the human breast cancer subtypes has not previously been addressed. We demonstrate that MET levels are variable across molecular subtypes but show elevation in the basal subtype and correlates with poor outcome. We used a candidate gene approach derived from microarray data to gain an understanding of signals required for Met-dependent tumorigenesis. We investigated Nck adaptor proteins and demonstrate a role for Nck in cell motility and actin dynamics of Met-dependent breast carcinoma cells and show elevated expression in human basal breast cancers. By generating a unique mouse model in which Met is expressed in mammary epithelia, with the examination of MET levels in human breast cancer, we have established a novel link between MET and basal breast cancer. This work identifies poor outcome basal breast cancers that may benefit from anti-MET therapies.
|
109 |
Expression analysis of the 3p25.3-ptelomere genes in epithelial ovarian cancerRossiny, Vanessa Delphine. January 2008 (has links)
Microarray expression analysis was carried out to identify genes with a role in epithelial ovarian cancer (EOC). The U133A Affymetrix GeneChipRTM was used to determine the expression patterns of the 3p25.3-ptel genes represented on the microarray in 14 primary cultures of normal ovarian surface epithelial (NOSE) samples, 25 frozen malignant ovarian tumor samples and four EOC cell lines. Seven genes with differential expression patterns in the tumor samples compared to the NOSE samples were identified as candidates for further analysis, starting with ARPC4, SRGAP3 and ATP2B2. Although none of the candidates had been previously studied in ovarian cancer, several had either family or pathway members that had. Expression patterns seemed unaffected by either tumor histopathological subtype or the allelic imbalances observed with loss of heterozygosity (LOH) analysis. The absence of association with genomic context suggested that differential expression was the result of transcriptional regulation rather than direct targeting.
|
110 |
Basal-like breast cancers : characterization and therapeutic approachesKhalil, Tayma. January 2008 (has links)
Background. Both basal-like subtype and BRCA1-related breast cancers tend to have a poor overall prognosis and lack of effective treatments. Given that the lung cancer drug gefitinib and the leukemia drug dasatinib inhibit proteins also belonging to the molecular signature of this subtype, we and others hypothesized that they might be useful therapies for those two breast cancer subgroups. / Methods. Eight breast cancer cell lines were characterized by immunohistochemistry and western blotting and were treated with both drugs. Response was measured by using the sulphorhodamine B (SRB) assay. / Results. Two out of six basal-like cell lines were sensitive to gefitinib and five of six to dasatinib. BRCA1-related breast cancers were also responsive to dasatinib (three out of four). Moreover, EGFR and caveolin-1 act as markers for dasatinib sensitivity, but do not appear to be the primary targets of this drug. The presence of SRC but not ABL is necessary to achieve a response to dasatinib. / Conclusion. Dasatinib is more effective in the treatment of basal-like breast cancers than gefitinib and acts by inhibiting SRC and other molecules that are yet to be determined.
|
Page generated in 0.0588 seconds