Spelling suggestions: "subject:"nervous system degeneration"" "subject:"nervous system 4egeneration""
61 |
Structural and Functional Studies of T-Cell Intracellular Antigen-1 (TIA1)Yang, Yizhuo January 2024 (has links)
T-cell Intracellular Antigen-1 (TIA1) is a multi-domain RNA-binding protein involved in stress granule formation and implicated in neurodegenerative diseases. TIA1 contains three RNA recognition motifs (RRMs), which are capable of binding nucleic acids, and a C-terminal intrinsically disordered prion-related domain (PRD), which plays a role in promoting liquid-liquid phase separation.
Motivated by our previous findings indicating that RRMs 2 and 3 exhibit a well-ordered structure in the oligomeric full-length form, whereas RRM1 and PRD demonstrate a propensity for phase separation, the present work in this dissertation aims to investigate the functional competence of the oligomeric state and its binding capabilities. Moreover, the study explores the effects of ligand binding on oligomerization dynamics and potential alterations in protein conformation primarily using solid-state NMR methods. The NMR data show that ssDNA binds to full-length oligomeric TIA1 primarily at RRM2, but also weakly at RRM3, and Zn2+ binds primarily to RRM3. The binding of Zn2+ and DNA was reversible and without the formation of amyloid fibrils. The addition of Zn2+ caused the TIA1:DNA complexes to collapse, indicating that Zn2+ may play a regulatory role by shifting the nucleic acid binding off RRM3 and onto RRM2 by occupying various “half” binding sites on RRM3 and introducing a mesh of crosslinks in the supramolecular complex.
Furthermore, this dissertation presents an investigation into the interdomain interactions between RRM2 and RRM3, facilitated by the successful preparation of segmentally labeled protein samples using the trans-splicing approach. The results confirm the hypothesis that Zn2+ can bring RRM2 and RRM3 closer together by crosslinking different monomers, as evidenced by the observation of enhanced NMR signals from heteronuclear correlations around the Zn2+ binding sites.
In conclusion, studying the structure of full-length TIA1 oligomers is expected to reveal the mechanisms by which an RNA regulatory protein assembles and binds to its biologically relevant ligands while preserving a highly ordered oligomeric structure.
|
62 |
Microglia Purinergic Receptor-Mediated Neuroinflammation in Alzhimer's DiseaseHeavener, Kelsey Sarah January 2024 (has links)
Microglia Purinergic Receptor-Mediated Neuroinflammation In Alzheimer’s Disease Neurodegeneration involves a complicated cascade of homeostatic dysfunction that converges on neuron loss and cognitive decline, involving complex immune, metabolic, and cell cell crosstalk pathways. The complicated interplay and heterogeneous nature of these factors in the brain make therapeutic development challenging. Recent advances have placed the immune system as an important driver of neurodegeneration both mechanistically and genetically. Microglia are the professional phagocytes that inhabit the brain and direct these inflammatory pathways, which can have reparative or destructive outcomes on the brain parenchyma. While various genetic risk factors for neurodegeneration reside in microglia, how these trigger and facilitate disease requires further investigation.
In the present dissertation, I investigate inflammatory activation in microglia upon various damage or pathology-associated stimuli by utilizing a primary human monocyte-derived microglia-like cell (MDMi) model from a diverse donor cohort, which allows for the examination of genetically driven differences. I find that MDMi stimulated through ATP-mediated P2RX7 activation display reduced phagocytic function for amyloid beta uptake, and this pathway is also influenced by individual donors’ SPI1 genotype which has been associated with Alzheimer’s disease in previous computational studies. These experiments demonstrate functional outcomes related to AD genetics in immune cells.
Previous computational studies have identified cognitive-decline associated gene modules expressed in human brain tissues from late-stage AD. I conducted in vitro follow up experiments to interrogate these genetic findings which is crucial for validating RNA sequencing data in a biological model. To interrogate differential MDMi inflammatory pathways, I treated cells with the toxic immunostimulatory molecule lipopolysaccharide (LPS), or its non-toxic derivative monophosphoryl lipid A (MPLA) which has positive immune properties currently utilized in vaccine adjuvants. My results indicated that individual gene expression in this module does not shift in a uniform manner upon LPS or MPLA challenge, suggesting more nuanced in vitro interrogation is required to identify conditions propagating this end stage disease phenotype. Microglia serve as the primary immune cells of the brain but also interact closely with astrocytes, large glial cells that facilitate neuronal homeostasis and are central players in AD due to their high apolipoprotein (APOE) production. Given the newly appreciated role of cellular crosstalk in neurological disease pathogenesis, I sought to optimize a protocol for isolation of primary mouse astrocytes for coculture with MDMi and investigation of non-direct cell contact interactions through astrocyte supernatants. Described in this dissertation is my optimized protocol for purified mouse astrocyte isolation from mice expressing humanized APOE2, APOE3, or APOE4.
By developing this model, I was able to discern differential changes to MDMi gene expression in the presence of APOE2, 3, or 4 astrocyte supernatants. Verification of these tools allows further exploration of APOE genotype on glial crosstalk and downstream AD pathology. Overall, this work uncovers important mechanisms of human microglia activation through AD genetics and extracellular P2RX7 receptor behavior. By interrogating these scientific questions in a human microglia model derived from donors of various genetic and age backgrounds, we can assess how real biological variation modulates canonical inflammatory pathways. This adds powerful clinical relevance as AD and other neurodegenerative conditions can present a very heterogenous phenotype pathologically and therefore may require the nuance of more personalized medicine therapeutically.
|
63 |
Tools for uniform labeling, high-throughput imaging, and comparative analysis of large brain samplesChen, Yannan January 2024 (has links)
Mental and neurological disorders account for a large part of the total global disease burden, yet there is a severe lack of effective treatments for reducing the associated disability and mortality. Brain dysfunctions are caused by a large variety of factors, such as pathological network connectivity, altered cellular and physiological properties, and neurotransmitter imbalances that act together or alone to result in profound behavioral impacts. Thus, there is an urgent need for integrative tools that allow an unbiased whole-brain understanding of the underlying pathophysiology of complex brain disorders. Recent advances in tissue clearing, labeling, and high-resolution light sheet microscopy, are enabling mapping and comparative analysis of large intact brain samples in normal and diseased states. However, multiple challenges remain, specifically in achieving uniform labeling of specific molecular targets in large tissues, scalable microscopy platforms for high-resolution whole-brain imaging, and multi-scale high-accuracy comparative data analysis tools. Here, I present my work in the development of a set of novel methods to address some of these challenges.
The first aim focuses on developing a rapid and uniform deep tissue molecular labeling method by utilizing modified DNA aptamers to significantly reduce the staining times (e.g., less than 4 days for an intact mouse brain, as opposed to several weeks). The second aim introduces a cost-effective (~20x cheaper) and scalable light sheet fluorescence microscopy (LSFM) implementation, so-called projected Light sheet microscopy (pLSM), for rapid high-resolution imaging of large biological samples. The third aim is focused on developing a suite of large data analysis methods (suiteWB) for high-resolution whole-brain comparative phenotyping – both at the level of neuron densities and their brain-wide projection patterns. Through this pipeline, we systematically investigated the brain-wide dopaminergic modulatory pathway alterations resulting from chronic ketamine exposure.
Altogether, these sets of highly integrative labeling, imaging, and analysis tools will facilitate a comprehensive understanding of the pathophysiology of complex brain disorders and the discovery of novel therapeutic targets.
|
64 |
The impact of developmental stress on the functioning and vulnerability of CNS neuronsPienaar, Ilse-Sanet 12 1900 (has links)
Thesis (PhD (Biomedical Sciences. Medical Physiology))--Stellenbosch University, 2008. / The overall objective of this thesis is to provide additional data to assist clinicians and
experimental neurologists alike in the quest for better understanding, more accurately
diagnosing and more successfully treating patients suffering from Parkinson’s disease (PD).
The general theme of the thesis is the interaction between certain environmental stimuli,
including the exposure to adverse events during early central nervous system (CNS)
development and the manifestation of elements of neurodegeneration, whether by means of
neurochemical changes or expressed as a dysfunctional voluntary motor system.
The first chapter provides a general introduction to the research theme of the thesis. This
includes, in particular, a discussion on current understanding concerning the etiology and
clinical profile of PD, the relative contribution made by genetic factors compared to
environmental ones, and current treatment strategies for treating the disease. Mention is also
made of the failure of these therapeutic applications for reversing or protecting against the
disease, due to the side-effects associated with them. The material covered in chapter 1
provides the basis for the more complete discussion concerning these various aspects,
contained in the chapters to follow.
The overall aim was also to characterise the effects of commonly used toxin-induced animal
models of PD, and the extent of vulnerability that the CNS displays towards them. The
destruction of dopaminergic neurons following the administration of 6-OHDA at targeted points
along the nigrostriatal tract is used extensively to model PD pathology in rats and is an
established animal model of the disease. However, mature or even aged animals are mainly
used in these studies, while the effects that the toxin might have on the developing CNS remain
unclear. The study reported in chapter 4 aimed to elucidate some of 6-OHDA’s actions on the
young adolescent (35 days-old) CNS by comparing the motor and biochemical effects of a
unilateral infusion of the toxin into two anatomically distinct basal ganglia loci: The medial
forebrain bundle (MFB) and the striatum. Animals were randomly assigned to receive either a
direct delivery of 6-OHDA (12μg/4μl) into the MFB or an indirect injection, into the striatum.
Although both lesion types were used, the MFB model is considered a more accurate portrayal
of end-stage PD, while the striatum-model better reflects the long-term progressive pathology of
the disease. The different lesions’ effects on motor function were determined by observing
animal’s asymmetrical forelimb use to correct for weigh shifting during the vertical exploration of
a cylindrical enclosure. Following the final behavioral assessment, the concentration of
dopamine (DA) and DA metabolites remaining in the post-mortem brains were determined using
4
HPLC electrochemistry (HPLC-EC) and the levels compared between the two groups. The
HPLC-EC results revealed a compensatory effect for DA production and DA turnover on the
lesioned hemisphere side of the toxin-infused animal group. Thus, following 6-OHDA treatment,
there appears to be extensive adaptive mechanisms in place within the remaining dopaminergic
terminals that may be sufficient for maintaining relatively high extracellular and synaptic
concentrations of DA. However, since substantial changes in motor-function were observed, it is
suggested that the capacity of the remaining dopaminergic neurons to respond to increased
functional demands may be limited. In addition, the behavioral results indicate that the distinct
indices relating to different functional deficits depend on the lesioning of anatomically distinct
structures along the nigrostrial tract.
It has long been known that far fewer women are diagnosed with PD than men are. This
seeming protection offered to females against degenerative disease of the CNS may relate to
estrogen, although the hormone’s mechanism of action on the dopaminergic system is poorly
defined. With an estimated 10-15 million women using oral contraceptives (OCs) in the United
States alone, the aim of chapter 2 was to examine the evidence for a possible relationship
between PD and the female reproductive hormone estrogen. A review of the current literature
available on the topic was performed by consulting Medline, and by performing a search of the
case-reports contained within the World Health Organization’s (WHO) International Drug
Monitoring database, for possible PD-related symptoms that may arise from estrogen
replacement therapy (ERT). The results, whilst conflicting, seem to suggest that estrogen
protects women from obtaining the disease, or at least some features of it. Intensive research
efforts are called for, with sufficient power to establish the relationship between ERT and the
onset and development of parkinsonism. Chapter 3 reports on the results obtained from an
experiment that subjected young Sprague-Dawley rats, 35 days of age, to a lower and a higher
dose of 6-OHDA delivered to the MFB. Control rats received equivalent saline infusions. At 14
days post-surgery, the rats were evaluated for forelimb akinesia. For the higher dose of 6-
OHDA the female rats were less impaired than males in making adjustment steps in response
to a weight shift and in the vibrissae-evoked forelimb placing test. In addition, Tyrosine
hydroxylase (TH) immunoreactivity was significantly higher for the female rats. Early gender
differences in cell survival factors and/or other promoters of neuroplasticity may have
contributed to the beneficial outcome seen in the females. For example, nerve growth factor
(NGF) was found to be higher in the female rats following administration of the DA neurotoxin. It
is unclear whether gonadal steroids are involved, and, if so, whether female hormones are
protective or whether male hormones are prodegenerative. Determining the mechanisms for the
improved outcome seen in the young female rats may lead to potential treatment strategies
against PD.
5
Many studies have shown that early life stress may lead to impaired brain development, and
may be a risk factor for developing psychiatric diseases, including clinical depression. However,
few studies have investigated the impact that early stress may have on the onset and
development of neurodegenerative disorders such as PD. The study reported on in chapter 5
conjointly subjected rat pups to a maternal separation (MS) paradigm that is a well
characterised model of adverse early life events, and a unilateral, intrastriatal injection of 6-
OHDA. The combined effects of these models on motor deficits and brain protein levels were
investigated. Specifically, the animals were assessed for behavioral changes at 28 days postlesion
with a battery of tests that are sensitive to the degree of DA loss sustained. The results
show that animals that had been subjected to MS display poorer performance in the vibrissae
and single-limb akinesia test compared to non-MS control animals (that had also been
subjected to the toxin exposure). In addition, there was a significant increase in the loss of TH
staining in MS rats compared to non-MS ones. The results from this study therefore suggest
that exposure to adverse experiences during the early stages of life may contribute towards
making dopaminergic neurons more susceptible to subsequent insults to the CNS occurring
during mature stages of life. Therefore, taken together, early exposure to stress may predispose
an individual towards the onset and development of neurodegenerative disease, which
especially becomes a threat during the later stages of adult life.
Moreover, within the framework of these characteristics, the capacity of a widely-used
pharmacological agent (statins) was tested for possible future therapeutic application in PD
(chapter 7). Although the precise cause of sporadic PD remains an enigma, evidence suggests
that it may associate with defective activity of complex I of the mitochondrial electron transport
chain. Mitochondrial DNA transmit and express this defect in host cells, resulting in increased
oxygen free radical production, depressed antioxidant enzyme activities, and greater
susceptibility to apoptotic cell death. Simvastatin is a member of the 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase inhibitors (statins) group of drugs that are widely used for
lowering cholesterol levels in patients who display elevated concentrations of low-density
lipoprotein cholesterol. The study aimed to investigate the effects that statin-treatment have on
motor-function and at the mitochondrial-protein level, using rotenone, a mitochondrial complex I
inhibitor, as a rat-model of PD. Adult male Sprague-Dawley rats were treated either with
simvastatin (6mg/day for 14 days) or with a placebo. Two different tests to assess motor
function were used: The apomorphine-rotation test, and the vibrissae-elicited forelimb
placement test. Following the drug administration protocol, the nigrostriatal tract was unilaterally
lesioned with either rotenone (3 μg/4 μl) or, for the controls, were sham-operated by infusing the
vehicle (DMSO:PEG) only. Five days later the rats were killed and a highly purified
concentration of isolated mitochondria was prepared from the substantia nigra (SN) sections. 2-
6
Dimensional electrophoresis (2-DE) with subsequent identification of the spots using
electronspray ionization quadruple time-of-flight mass spectrometrical (ESI-Q-TOF MS) was
performed and the results BLAST-searched using bio-informatics tools for naming the identified
peptides. The motor test results indicate that while unilateral rotenone causes behavioral
asymmetries, treatment with simvastatin improved motor function relative to the rotenoneinduced
ones. Mass Spectroscopy identified 23 mitochondrial proteins that differ significantly in
protein expression (p < 0.05) following simvastatin treatment. The altered proteins were broadly
classified according to their cellular function into 6 categories, with the majority involved in
energy metabolism. This study effectively illustrated how neuroproteomics, with its sophisticated
techniques and non-biased ability to quantify proteins, provides a methodology with which to
study the changes in neurons associated with neurodegeneration. As an emerging tool for
establishing disease-associated protein profiles, it also generates a greater understanding as to
how these proteins interact and undergo post-translational modifications. Furthermore, due to
the advances made in bioInformatics, insight is created concerning their functional
characteristics. Chapter 4 summarises the most prominent proteomics techniques and discuss
major advances made in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped
that the application of this technology will lead towards a presymptomatic diagnosis of PD, and
the identification of risk factors and new therapeutic targets at which pharmacological
intervention can be aimed.
The final chapter (chapter 8) provides a retrospective look at the academic work that had
been performed for the purpose of this thesis, recaps on the main findings, and also highlights
certain aspects of the project and provides relevant suggestions for future research. Lastly, the
appendix provides a detailed overview of the methods followed for the experiments described in
this thesis. It provides not only a comprehensive description of the techniques that had been
followed, but provides information concerning the care taken with the animals (i.e. post-surgery)
in order to control for the potential influence of experimental variables on the results.
|
65 |
In vitro and in vivo study of the roles of hepcidin in the brain. / Hepcidin在腦內功能的離體以及在體研究 / 鐵調素在腦內功能的離體以及在體研究 / CUHK electronic theses & dissertations collection / Hepcidin zai nao nei gong neng de li ti yi ji zai ti yan jiu / Tie diao su zai nao nei gong neng de li ti yi ji zai ti yan jiuJanuary 2011 (has links)
Hepcidin is a well-known iron-regulatory hormone that plays a key role in maintaining peripheral iron homeostasis. The presence and wide-spread distribution of hepcidin in the brain suggests that this peptide may also be an important player in brain iron homeostasis. In this study, we tested the hypothesis that hepcidin exerts an important role in the regulation of brain iron content, which might benefit iron-associated NDs such as PD. We also examined the hypothesis that hepcidin could control iron transport processes via regulating iron transport proteins in the brain cells, thus maintaining brain iron homeostasis. / In conclusion, the results of the present study implied that hepcidin plays an important role in maintaining brain iron homeostasis. Hepcidin is beneficial for PD and this effect is related to its iron-regulatory effect via inhibiting iron accumulation in the substantia nigra. Hepcidin effectively controls iron uptake and release through regulating iron transport proteins expressions in the brain, which would contribute to brain iron homeostasis. Therefore, manipulation of hepcidin level in the brain has a potential to be developed into a novel preventive approach for the iron-associated NDs such as PD. / In the second part, we investigated the effect of hepcidin on the processes of iron uptake and release in the cultured brain cells including neurons, astrocytes and brain vascular endothelial cells (BVECs). The expressions of iron uptake proteins such as transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) as well as the iron exporter ferroportin 1 (Fpn1) were also observed. We found that hepcidin reduced both iron uptake and release via decreasing iron transport proteins expressions in these brain cells, which would contribute to its iron regulatory effect. Finally, we further explored the mechanisms underlying the regulatory effect of hepcidin on the iron transporters in the last part, and found that the action of hepcidin in reducing TfR1 expression is a direct and cAMP-PKA (Cyclic Adenosine 3', 5'-monophosphate/ Protein Kinase-A) pathway-dependent event. / Iron is a transition trace metal essential for mammalian cellular and tissue viability. It also plays important roles in the central nervous system (CNS), including embryonic brain development, myelination, and neurotransmitters synthesis. However, abnormal iron accumulation has been demonstrated in a number of neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases (HD). Currently very little is known about the mechanisms involved in brain iron homeostasis and therefore it is not known why and how iron is abnormally increased in the brain. However, given the essential role that excess iron plays in the pathological processes in the NDs, to suppress the accumulated iron is expected to be an effective strategy to prevent and treat these NDs. / To investigate whether hepcidin could benefit iron-associated NDs including PD and whether this beneficial role is related to its iron-regulatory function in the brain, in the first part of study, we investigated the effects of hepcidin on the 6-hydroxydopamine (6-OHDA) in vitro and in vivo PD models. We found that in primary cultured mesencephalic (MES) neurons, hepcidin overexpression via adenovirus-hepcidin (Ad-hepcidin) infection prevented 6-OHDA-induced increase in cellular iron content and protected the MES neurons. In the 6-OHDA model of PD in vivo, overexpression of hepcidin in the substantia nigra via Ad-hepcidin intranigral injection significantly prevented iron accumulation and dopaminergic neurons loss in the pars compacta of substantia nigra (SNc). These effects were accompanied by a marked improvement in motor performance of the PD animals. These findings indicate that hepcidin could benefit iron-associated NDs such as PD and via its iron-regulatory role in the brain. / Du, Fang. / Adviser: Ya Ke. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 152-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
66 |
Proteomic analysis of polyglutamine disease in drosophila.January 2005 (has links)
Lam Wun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 140-153). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLDGEMENT --- p.iii / TABLE OF CONTENT --- p.iv / ABBREVIATIONS --- p.x / LISTS OF TABLES --- p.xi / LISTS OF FIGURES --- p.xii / Chapter 1. --- INTRODUCTION / Chapter 1.1 --- Neurodegeneration and triplet repeat diseases --- p.1 / Chapter 1.2 --- Polyglutamine diseases --- p.2 / Chapter 1.3 --- Polyglutamine nuclear inclusions --- p.4 / Chapter 1.3.1 --- Kinetics of polyglutamine nuclear inclusion formation --- p.4 / Chapter 1.3.2 --- Roles of protein inclusions in neurodegeneration --- p.7 / Chapter 1.4 --- Polyglutamine pathogenic pathways --- p.8 / Chapter 1.4.1 --- Protein depletion theory --- p.9 / Chapter 1.4.2 --- Induction of apoptotic pathways --- p.13 / Chapter 1.5 --- Previous study on NI proteins --- p.14 / Chapter 1.6 --- Drosophila model for studying polyglutamine diseases --- p.15 / Chapter 1.6.1 --- Drosophila model for studying human diseases --- p.15 / Chapter 1.6.2 --- GAL4/UAS gene expression system --- p.15 / Chapter 1.6.3 --- Drosophila polyglutamine models --- p.17 / Chapter 1.7 --- Objectives of the study --- p.21 / Chapter 2. --- MATERIALS AND METHODS / Chapter 2.1 --- Drosophila genetics --- p.22 / Chapter 2.1.1 --- Drosophila culture --- p.22 / Chapter 2.1.2 --- GAL4/UAS gene expression system --- p.22 / Chapter 2.1.3 --- Eye phenotypic analysis --- p.25 / Chapter 2.1.4 --- Polyglutamine fly models --- p.25 / Chapter 2.1.5 --- Generation and characterization of GFP-polyglutamine transgenic fly models --- p.25 / Chapter 2.2 --- Proteomic identification of nuclear inclusion proteins --- p.26 / Chapter 2.2.1 --- Proteomic identification of NI proteins by SDS-insolubility of NIs --- p.26 / Chapter 2.2.2 --- Proteomic identification of NI proteins by FA-solubility of NIs --- p.27 / Chapter 2.2.2.1 --- Approach overview --- p.27 / Chapter 2.2.2.2 --- Sample preparation for two-dimensional gel electrophoresis --- p.27 / Chapter 2.2.2.3 --- Two-dimensional gel electrophoresis --- p.29 / Chapter 2.2.2.4 --- Polyacrylamide gel staining --- p.31 / Chapter 2.2.2.5 --- Computer analysis of 2D patterns --- p.31 / Chapter 2.2.2.6 --- In-gel trypsin digestion --- p.32 / Chapter 2.2.2.7 --- Mass spectrometric analysis --- p.33 / Chapter 2.2.3 --- Detection of NIs by flow cytometry --- p.34 / Chapter 2.3 --- SDS-polyacrylamide gel electrophoresis (SDS-PAGE) --- p.34 / Chapter 2.3.1 --- Sample preparation for SDS-PAGE --- p.34 / Chapter 2.3.2 --- SDS-PAGE --- p.35 / Chapter 2.4 --- Immunodetection --- p.36 / Chapter 2.4.1 --- Electroblotting --- p.36 / Chapter 2.4.2 --- Western blotting --- p.36 / Chapter 2.4.3 --- Filter trap assay --- p.37 / Chapter 2.5 --- Sav antibody production --- p.38 / Chapter 2.5.1 --- Sav peptide synthesis --- p.38 / Chapter 2.5.2 --- Rabbit immunization --- p.38 / Chapter 2.6 --- Cryosectioning and immunostaining of adult fly heads --- p.39 / Chapter 2.7 --- Alcohol dehydrogenase assay --- p.40 / Chapter 2.8 --- Semi-quantitative reverse transcription- Polymerase Chain Reaction --- p.41 / Chapter 2.8.1 --- Total RNA preparation from fly heads --- p.41 / Chapter 2.8.2 --- Reverse transcription- Polymerase Chain Reaction (RT-PCR) --- p.41 / Chapter 2.9 --- Reagents and buffers --- p.42 / Chapter 3. --- RESULTS / Chapter 3.1 --- Transgenic polyglutamine fly models --- p.48 / Chapter 3.1.1 --- Characteristics of MJD polyglutamine fly model --- p.48 / Chapter 3.1.1.1 --- Overexpression of expanded truncated human MJD proteins in Drosophila causes eye degeneration --- p.49 / Chapter 3.1.1.2 --- Overexpression of expanded truncated human MJD proteins in Drosophila results in nuclear inclusion formation --- p.49 / Chapter 3.1.1.3 --- Formic acid dissolves fly polyglutamine nuclear inclusions --- p.51 / Chapter 3.1.1.3.1 --- Formic acid dissolves fly polyglutamine NIs as shown by Western blot analysis --- p.51 / Chapter 3.1.1.3.2 --- Formic acid dissolves fly polyglutamine NIs as shown by filter trap assay --- p.53 / Chapter 3.1.2 --- Summary --- p.55 / Chapter 3.2 --- Proteomic identification of nuclear inclusion (NI) proteins --- p.56 / Chapter 3.2.1 --- Proteomic identification of NI proteins by SDS-insolubility of NIs --- p.56 / Chapter 3.2.2 --- Proteomic identification of NI proteins by FA-solubility of NIs --- p.63 / Chapter 3.2.2.1 --- Two-dimensional gels showing differential protein spots as potential NI proteins --- p.63 / Chapter 3.2.2.2 --- NI protein candidates identified by the 2D approach --- p.75 / Chapter 3.2.3 --- Study of polyglutamine NI proteins by flow cytometry analysis --- p.90 / Chapter 3.2.3.1 --- Detection of fly polyglutamine NIs by flow cytometry --- p.90 / Chapter 3.2.3.2 --- Characterization of a new GFP-polyglutamine fly model --- p.92 / Chapter 3.3 --- Characterization of the nuclear inclusion protein candidates --- p.96 / Chapter 3.3.1 --- Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) --- p.96 / Chapter 3.3.1.1 --- Confirmation of GAPDH as a NI protein --- p.97 / Chapter 3.3.1.2 --- Discussion --- p.97 / Chapter 3.3.2 --- Receptor of activated protein kinase C (RACK1) --- p.99 / Chapter 3.3.2.1 --- Confirmation of RACK1 as a NI protein --- p.99 / Chapter 3.3.2.1.1 --- Colocalization of RACK1 with NIs --- p.99 / Chapter 3.3.2.1.2 --- Formic Acid extracts RACK1 from NIs --- p.101 / Chapter 3.3.2.2 --- Reduction of soluble RACK1 protein level in polyglutamine fly --- p.101 / Chapter 3.3.2.2.1 --- Soluble RACK1 protein level reduced in polyglutamine fly --- p.101 / Chapter 3.3.2.2.2 --- RACK1 transcript level remains unchanged in polyglutamine fly --- p.103 / Chapter 3.3.2.3 --- Overexpression of RACK 1 partially suppresses polyglutamine degeneration --- p.105 / Chapter 3.3.2.4 --- Discussion --- p.107 / Chapter 3.3.3 --- Warts (Wts) --- p.111 / Chapter 3.3.3.1 --- Overexpression of Wts partially suppresses polyglutamine degeneration --- p.111 / Chapter 3.3.3.2 --- Wts mutant slightly enhances polyglutamine degeneration --- p.113 / Chapter 3.3.3.3 --- Genetic analysis of Warts pathway in polyglutamine pathogenesis --- p.113 / Chapter 3.3.3.3.1 --- Overexpression of Salvador partially suppresses polyglutamine degeneration --- p.116 / Chapter 3.3.3.3.2 --- Hpo mutant slightly enhances polyglutamine degeneration --- p.119 / Chapter 3.3.3.3.3 --- Overexpression of DIAP1 partially suppresses polyglutamine degeneration --- p.119 / Chapter 3.3.3.4 --- Discussion --- p.121 / Chapter 3.3.4 --- Alcohol dehydrogenase (Adh) --- p.122 / Chapter 3.3.4.1 --- Adh activity is reduced in polyglutamine flies --- p.122 / Chapter 3.3.4.2 --- Overexpression of Hsp70 partially restores the reduced Adh activity in polyglutamine flies --- p.122 / Chapter 3.3.4.3 --- Discussion --- p.125 / Chapter 3.3.5 --- Genetic analysis of other NI protein candidates --- p.127 / Chapter 3.3.5.1 --- Overexpression of CG7920 protein partially suppresses polyglutamine degeneration --- p.127 / Chapter 3.3.5.2 --- Pten dsRNA slightly enhances polyglutamine degeneration --- p.129 / Chapter 3.3.6 --- Summary --- p.131 / Chapter 4. --- DISSCUSSION / Chapter 4.1 --- Protein depletion theory --- p.133 / Chapter 4.2 --- Comparison of different approaches for identification of NI proteins --- p.134 / Chapter 4.3 --- Long-term significance --- p.136 / Chapter 4.4 --- Future studies --- p.137 / Chapter 4.4.1 --- Characterization of other NI protein candidates --- p.137 / Chapter 4.4.2 --- Study of NI proteins by an alternative approach --- p.137 / Chapter 4.4.3 --- Study of NI proteins using other polyglutamine fly models --- p.137 / Chapter 5. --- CONCLUSION --- p.139 / Chapter 6. --- REFERENCES --- p.140
|
67 |
Functional Consequences of Model Complexity in Hybrid Neural-Microelectronic SystemsSorensen, Michael Elliott 15 April 2005 (has links)
Hybrid neural-microelectronic systems, systems composed of biological neural networks
and neuronal models, have great potential for the treatment of neural injury and
disease. The utility of such systems will be ultimately determined by the ability of the engineered
component to correctly replicate the function of biological neural networks. These
models can take the form of mechanistic models, which reproduce neural function by describing
the physiologic mechanisms that produce neural activity, and empirical models,
which reproduce neural function through more simplified mathematical expressions.
We present our research into the role of model complexity in creating robust and flexible
behaviors in hybrid systems. Beginning with a complex mechanistic model of a leech
heartbeat interneuron, we create a series of three systematically reduced models that incorporate
both mechanistic and empirical components. We then evaluate the robustness
of these models to parameter variation, and assess the flexibility of the models activities.
The modeling studies are validated by incorporating both mechanistic and semi-empirical
models in hybrid systems with a living leech heartbeat interneuron. Our results indicate
that model complexity serves to increase both the robustness of the system and the ability
of the system to produce flexible outputs.
|
68 |
Evaluation and application of electroanalysis for the determination of antioxidantsRagubeer, Nasheen January 2007 (has links)
The role of antioxidants in the prevention of neurodegenerative diseases has been well documented. The use of synthetic antioxidants has decreased due to the ssociation of these compounds with certain cancers. Thus, the search for novel natural antioxidants has gained much focus in research. Most common methods of determining antioxidant capacity are the radical generated assays and biological assays such as lipid peroxidation and the nitroblue tetrazolium assay. Electrochemical methods have been proposed for the determination of bio-active compounds such as antioxidants. The electrochemical methods of cyclic voltammetry and square wave voltammetry were evaluated for the determination of antioxidant capacity initially examining known antioxidants and then using plant extracts of Sutherlandia frutescens as a case study. The antioxidant properties determined by electrochemical methods were validated utilising the non-biological methods of the DPPH, TEAC, ferrozine and FC assay and biological pharmacological methods. The results indicated that Sutherlandia frutescens contains potent antioxidant compounds that are able to reduce lipid peroxidation. The electrochemical techniques of square wave voltammetry and cyclic voltammetry were applied for the screening of a large number of extracts of various algae for the detection of antioxidant compounds. The results indicated that electrochemistry can be used as a preliminary method for the rapid screening of a large number of crude samples for antioxidant compounds. Electrochemical methods were also evaluated as a method for guiding the isolation and purification of antioxidant metabolites in Sargassum elegans. Solvent partitioning and fractionation of the marine alga allowed for the purification of antioxidant compounds. At each step of purification electrochemical methods were utilized to determine which fractions contained the more potent antioxidant compounds and thus guide further purification. The purified antioxidant compounds were elucidated using NMR to determine the structure of the antioxidant compounds.
|
69 |
Neuroprotective mechanisms of nevirapine and efavirenz in a model of neurodegenerationZheve, Georgina Teurai January 2008 (has links)
AIDS Dementia Complex (ADC) is a neurodegenerative disorder implicated in HIV-1 infection that is associated with elevated levels of the neurotoxin, quinolinic acid (QA) which causes a cascade of events to occur, leading to the production of reactive oxygen species (ROS), these being ultimately responsible for oxidative neurotoxicity. In clinical studies, Non-nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz (EFV) and nevirapine (NVP) have been shown to potentially delay the progressive degeneration of neurons, thus reducing the frequency and neurological deficits associated with ADC. Despite these neuroprotective implications, there is still no biochemical data to demonstrate the mechanisms through which these agents offer neuroprotection. The present study aims to elucidate and further characterize the possible antioxidant and neuroprotective mechanisms of NVP and EFV in vitro and in vivo, using QA-induced neurotoxicity as a model. Research has demonstrated that antioxidants and metal chelators have the ability to offer neuroprotection against free radical induced injury and may be beneficial in the prevention or treatment of neurodegeneration. Hence the antioxidant and metal binding properties of these agents were investigated respectively. Inorganic studies, including the 1, 1-diphenyl-2 picrylhydrazyl (DPPH) assay, show that these agents readily scavenge free radicals in vitro, thus postulating the antioxidant property of these agents. The enhancement of superoxide radical generation and iron mediated Fenton reaction by QA is related to lipid peroxidation in biological systems, the extent of which was assayed using the nitroblue tetrazolium and thiobarbituric acid method respectively. Both agents significantly curtail QA-induced lipid peroxidation and potentially scavenge superoxide anions generated by cyanide in vitro. Furthermore, in vivo results demonstrate the ability of NVP and EFV to protect hippocampal neurons against lipid peroxidation induced by QA and superoxide radicals generated as a consequence thereof. The alleviation of QA-induced oxidative stress in vitro possibly occurs through the binding of iron (II) and / or iron (III), and this argument is further strengthened by the ability of EFV and not NVP to reduce iron (II)-induced lipid peroxidation in vitro directly. In addition the ferrozine and electrochemistry assay were used to measure the extent of iron (II) Fe[superscript 2+] and iron (III) Fe[superscript 3+] chelation activity. Both assays demonstrate that these agents bind iron (II) and iron (III), and prevent redox recycling of iron and subsequent complexation of Fe[superscript 2+] with QA which enhances neuronal damage. Both NNRTIs inhibit the endogenous biosynthesis of QA by inhibiting liver tryptophan 2, 3-dioxygenase activity in vivo and subsequently increasing hippocampal serotonin levels. Furthermore, these agents reduce the turnover of hippocampal serotonin to 5-hydroxyindole acetic acid. NVP and not EFV increase 5-hydroxyindole acetic acid and norepinephrine levels in the hippocampus. The results of the pineal indole metabolism study show that NVP increases the synthesis of melatonin, but decreases N-acetylserotonin, 5-hydroxyindole acetic acid and 5-hydroxytryptophol levels. Furthermore, it shows that EFV decreases 5-hydroxyindole acetic acid and melatonin synthesis. Behavioural studies using a Morris water maze show that the post-treatment of rats with NVP and EFV significantly improves QA-induced spatial memory deficits in the hippocampus. This study therefore provides novel information regarding the neuroprotective mechanisms of NVP and EFV. These findings strengthen the argument that these NNRTIs not only have antiviral effects but possess potential neuroprotective properties, which may contribute to the effectiveness of these drugs in the treatment of ADC.
|
70 |
An investigation into the neuroprotective properties of the non-steroidal anti-inflammatory agents tolmetin, sulindac and turmericDairam, Amichand January 2006 (has links)
Accumulating evidence suggests that anti-inflammatory agents and antioxidants have neuroprotective properties and may be beneficial in the treatment of neurodegenerative disorders. In the present study, the possible neuroprotective properties of tolmetin, sulindac and turmeric were investigated. The antioxidant effects of tolmetin and sulindac were determined by inducing free radical generation with quinolinic acid (QA), cyanide or iron (II) in rat brain homogenates or primary hippocampal neurons. Tolmetin and sulindac significantly reduce lipid peroxidation and scavenge the superoxide anion. Metal binding studies were conducted to determine whether metal chelation is a possible mechanism through which these agents reduce QA and iron (II)-induced lipid peroxidation. UV/VIS, infrared spectroscopy as well as electrochemical studies show that both agents bind to iron (II) and/or iron (III). Histological examination of the hippocampus showed that pre-treatment of animals with tolmetin or sulindac offers protection against intrahippocampal injections of QA. These agents also attenuate QA-induced apoptosis and reduce the loss of neurons in the hippocampus. The co-incubation of primary hippocampal neurons with the NSAIDS also enhanced cell viability which is significantly reduced by QA. Behavioural studies using a water maze showed that the treatment of animals after QA-induced neurotoxicity reduces QA-induced spatial memory loss. Tolmetin and sulindac also reduced glutathione depletion and protein oxidation in rat hippocampus. Both NSAIDS inhibit liver tryptophan 2,3-dioxygenase activity in vitro and in vivo and subsequently increased hippocampal serotonin levels. However, both NSAIDS also reduce dopamine levels in rat striatum. Tolmetin but not sulindac increased the synthesis of melatonin by the pineal gland. The active components of turmeric known as the curcuminoids were separated using preparative thin layer chromatography (TLC). The purity was confirmed by TLC, NMR and mass spectrometry. The environmental toxin lead, induces lipid peroxidation and reduces primary hippocampal neuronal viability. The co-incubation of the neurons with the curcuminoids significantly reduces lead-induced lipid peroxidation and enhances neuronal cell viability in the presence of lead. Lead-induced spatial memory deficit is also attenuated with curcumin, demethoxycurcumin but not bisdemethoxycurcumin. The curcuminoids also reduce lead-induced hippocampal glutathione depletion and protein oxidation. Metal binding studies show that the curcuminoids bind to lead and is another possible mechanism through which the curcuminoids reduce lead-induced neurotoxicity. The findings of this study indicate a possible role of tolmetin, sulindac and turmeric in neurodegenerative disorders such as Alzheimer’s disease. However, tolmetin and sulindac reduce dopamine levels.
|
Page generated in 0.122 seconds