Spelling suggestions: "subject:"test"" "subject:"est""
131 |
Ecological Associations of the Hooded Parrot (Psephotus dissimilis)Cooney, Stuart John Norman, stuart.cooney@anu.edu.au January 2009 (has links)
Interactions between nesting birds and invertebrates are a common, yet poorly understood ecological phenomenon. Many of these types of interactions are close and prolonged, and therefore potentially critical to one or both of the species involved in the interaction. However it is unusual for the nature of the interaction to be evaluated in a manner that reveals the impact of the relationship on both parties to the interaction. This study examines two relationships between nesting birds and invertebrates, both of which involve the hooded parrot (Psephotus dissimilis), a small grass parrot that inhabits the tropical savannas of northern Australia.
¶
The field-work for this project was conducted over two parrot breeding seasons in 2006 and 2007 near Katherine, Northern Territory, in the Australian dry tropics. In chapter II, I present data on the breeding biology of the hooded parrot as background for the study that follows. Nest building commenced in January, with peak activity in February and the last chicks fledged in April. Fifty three active nests were located. The mean number of eggs laid per nest was 4.5 (s.d. ± 0.9), of which 3.0 (± 1.79) hatched and 2.0 (± 2.0) fledged. Clutches were laid asynchronously over a period of a week and chicks remained in eggs for 18.6 (± 1.95 days). Chicks were 29.2 (± 2.9) days old when they fledged from the nest. These data are typical for Australian parrots.
¶
In chapter III, the unusual nature of the parrots nest site is examined. Many species of bird nest in natural cavities or those they excavate. Whilst cavity nesters as a whole experience increased nesting success, the greatest success is experienced by species that can excavate their own nests. Certain arboreal cavity nesters, such as woodpeckers, require extensive morphological adaptation for this behaviour, but this has not occurred in Australia, despite competition among birds and a suite of arboreal mammals for naturally occurring cavities. Some species, however, have adapted their behaviour to make use of substrates that are not as hard as wood. Hooded parrots excavate nests in terrestrial termitaria, releasing them from competition for limited arboreal cavities. However, I show that only termitaria with a high level of termite activity, and which are more than two metres tall, are suitable, and that the parrots exhibit a strong preference for the cathedral mounds of Nasutitermes triodiae. Nests placed in highly active mounds had a significantly higher success rate than those in mounds where activity was somewhat lower, suggesting that the behaviour is adaptive.
¶
The thesis then shifts focus from the parrot to its nest symbiont, first describing the species involved in the interaction in chapter IV, and then its behaviour in the nests of hooded parrots in chapter V. Trisyntopa neossophila sp. n. (Lepidoptera: Oecophoridae) was reared from the nest of the hooded parrot and described using morphological characters. Aspects of its biology are reported and similarities to the biology of Trisyntopa scatophaga found in the nests of the golden-shouldered parrot (Psephotus chrysopterygius) are discussed. The possibility that a moth was associated with the extinct paradise parrot (Psephotus pulcherrimus) is considered in the light of the phylogenetic relationships between the parrots.
¶
Trisyntopa neossophila is an unusual moth whose breeding cycle is shown to be closely synchronised with the hooded parrot. T. neossophila is one of three coprophagous, nest dwelling moths in the genus Trisyntopa. True coprophagy is rare in the Lepidoptera, although some species occasionally consume faeces to gain rare nutrients. T. neossophila lays its eggs in the nest of hooded parrots so that larvae hatch in synchrony with the hatching of the parrots eggs. The larvae spend their larval period in the nest and exclusively consume the excrement of the nestling parrots. When the parrot chicks fledge, the larvae move to the walls of the nest cavity to pupate, emerging the following wet season to repeat the process during the next parrot breeding season.
¶
With a description of the ecology of both species involved in the nesting symbiosis, chapter VI reviews the literature surrounding other interactions between nesting birds and invertebrates. A large number of birds are shown to nest in, or in close proximity to, structures made by invertebrates and avian nesting material provides a reliable shelter for many invertebrate species. However, the nature of such relationships has rarely been experimentally demonstrated. I propose that in order to understand the nature of these relationships they need to be explored within the theoretical framework of community ecology. Putative commensal and parasitic relationships have all been documented in the bird/invertebrate nesting literature, yet researchers, with few exceptions, repeatedly overlook the impact that these relationships are having on the invertebrate, at best assuming the nature of its impact, but more often ignoring its impact entirely. Here I present a framework for formulating hypotheses to ensure that the nature of the relationship can be identified. Only by explicitly stating the level of organisation at which the experiment is to occur (individual or population), identifying the net cost or benefit of the interaction, the range of conditions under which such costs or benefits would apply and the spatial and temporal context in which they apply, can an investigator expect to recognise and describe the often complex nature of these relationships.
¶
While parasitic and commensal relationships between nesting birds and invertebrates are commonly reported, mutualisms between birds and invertebrates have not been reported. Despite this, candidates for this type of relationship exist. Chapter VII uses the framework outlined in the literature review (chapter VI) to experimentally examine the relationship between the hooded parrot and Trisyntopa neossophila. By manipulating the populations of moth larvae in a sample of hooded parrot nests, we sought to establish the impact of the relationship on each species. The moth depends on the parrot for provision of shelter and a reliable food source. The parrot however, was neither benefited nor harmed by the interaction in terms of short term reproductive output or chick growth, although differences between the experimental and control nests were noted. The relationship between the hooded parrot and T. neossophila, at least during the study period, is therefore concluded to be commensal.
¶
Collectively, the chapters of this thesis explore the complicated interactions between species. The dependence of the moth on the parrot and the parrot on the termite, demonstrate the importance of understanding interactions between species in a manner that reveals the impacts of the interactions, the range of conditions under which they would apply and the level of organisation at which they apply, as outlined in chapter VI. The dependence of the animals in this study on each other makes them more vulnerable to extinction than previously thought. Whilst this may not be immediately significant for the hooded parrot/T. neossophila system, which is thought to be secure, the ecologically similar system on the Cape York Peninsula, involving the golden-shouldered parrot and its nest attendant moth Trysintopa scatophaga, is vulnerable to extinction and subject to intensive management to ensure its persistence. This study brings new information to the management of the golden-shouldered parrots and urgently recommends increased protection for Trysintopa scatophaga.
|
132 |
Artificial Grammar Recognition Using Spiking Neural NetworksCavaco, Philip January 2009 (has links)
<p>This thesis explores the feasibility of Artificial Grammar (AG) recognition using spiking neural networks. A biologically inspired minicolumn model is designed as the base computational unit. Two network topographies are defined with different ideologies. Both networks consists of minicolumn models, referred to as nodes, connected with excitatory and inhibitory connections. The first network contains nodes for every bigram and trigram producible by the grammar’s finite state machine (FSM). The second network has only nodes required to identify unique internal states of the FSM. The networks produce predictable activity for tested input strings. Future work to improve the performance of the networks is discussed. The modeling framework developed can be used by neurophysiological research to implement network layouts and compare simulated performance characteristics to actual subject performance.</p>
|
133 |
Effects of natural gas development on three grassland bird species in CFB Suffield, Alberta, CanadaHamilton, Laura 06 1900 (has links)
I investigated the effect of energy sector development and introduced crested wheatgrass (Agropyron cristatum) on grassland birds on Canadian Forces Base Suffield. I conducted point counts and mapped breeding territories in 2007 and 2008 for Savannah sparrows (Passerculus sandwichensis), chestnut-collared longspurs (Calcarius ornatus), and Spragues pipits (Anthus spragueii). I found
that Savannah sparrows favored areas with taller vegetation, human disturbances and crested wheatgrass in both years. Longspurs used shorter vegetation and in
were tolerant of disturbance. Crested wheatgrass was avoided by longspurs in both years. Pipit territories contained similar vegetation to longspurs, were sensitive to disturbance, and avoided placing territories in areas containing crested wheatgrass or trails in both years. Well sites, pipelines and junctions were not avoided by the three species. My research suggests that reducing the number of trails and the spread of crested wheatgrass will increase habitat availability for sensitive species of grassland birds. / Ecology
|
134 |
Building NestCarter, Laura 03 August 2007 (has links)
“What does it mean, to make a genuine generalization, to create an objective concrete abstraction of a phenomenon?”—Evald Ilyenkov. As Guy Debord writes in his Society of the Spectacle, “the lack of general historical life also means that individual life as yet has no history.” These poems are my process of coming to understand history, and many of them are critiques of histories per se. If, as Frank O’Hara writes, “these anxieties remain erect,” they also shape the poems that I have written here. I want to be in dialogue with the spectacle that shapes postmodernism. I want to live in communication with the memories of events that have shaped my speech over the years. The title is a struggle to regain a home while not forgetting the displacement of the proverbial poet, a poet to whom I am forever indebted and probably likely to become.
|
135 |
Nesting and duckling ecology of white-winged scoters (<i>melanitta fusca deglandi</i>) at Redberry Lake, SaskatchewanTraylor, Joshua James 01 December 2003
Population surveys indicate a declining trend in abundance for the scoter genus at the continental level. Little is known about changes in life history traits responsible for the recent population decline of white-winged scoters (<i>Melanitta fusca deglandi</i>, hereafter scoters). Therefore, I studied nesting and duckling ecology of scoters at Redberry Lake, Saskatchewan, Canada during summers 2000-2001 when I found 198 nests. To examine nest-site selection, I compared habitat features between successful nests, failed nests, and random sites. Discriminant function analysis differentiated habitat features, measured at hatch, between successful nests, failed nests, and random sites; lateral (r = 0.65) and overhead (r = 0.35) concealment were microhabitat variables most correlated with canonical discriminant functions. I also modeled daily survival rate (DSR) of nests as a function of year, linear and quadratic trends with nest age, nest initiation date, and seven microhabitat variables. Nest survival from a time constant model (i.e., Mayfield nest success estimate) was 0.35 (95% CL: 0.27, 0.43). Estimates of nest success were lower than those measured at Redberry Lake in the 1970s and 1980s. In addition to nest survival increasing throughout the laying period and stabilizing during incubation, nest survival showed positive relationships with nest concealment and distance to water, and a negative relationship with distance to edge. Considering these factors, a model-averaged estimate of nest survival was 0.24 (95% CL: 0.09, 0.42). I conclude that scoters selected nesting habitat adaptively because (1) successful sites were more concealed than failed sites, (2) nest sites (i.e., successful and failed) had higher concealment than random sites, and (3) nest sites were on islands where success is greater than mainland.
I then estimated duckling and brood survival with Cormack-Jolly-Seber models, implemented in Program Mark, from observations of 94 and 664 individually marked adult hens and ducklings, respectively. I tested hypotheses about duckling survival and (1) hatch date, (2) initial brood size at hatch, (3) duckling size and body condition at hatch, (4) offspring sex, (5) maternal female size and body condition at hatch, and (6) weather conditions within one week of hatching. Most mortality occurred during the first six days of duckling age. Variation in both duckling and brood survival were best modeled with effects of hatch date and initial brood size, while effects of female condition, female size, duckling size, and duckling condition were inconsistent. Survival probability clearly decreased with advancing hatch date and increased with larger initial brood sizes. Effects of weather and offspring sex in 2001, the only year such information was collected, suggested survival was negatively related to poor weather, but sex of ducklings, beyond size-related differences (i.e., sexual-size dimorphism), was unimportant. Estimates of survival to 28 days of age (30-day period), whether for ducklings (0.016, 0.021) or broods (0.084, 0.138) in 2000 or 2001, respectively, are the lowest of published studies and first for scoter broods in North America. I suspect intense gull predation shortly after hatch had the largest influence on duckling survival. Further research is needed to ascertain if low nesting success and duckling survival as well as other life cycle components are limiting scoter populations locally and throughout the rest of their breeding range.
|
136 |
Nesting and duckling ecology of white-winged scoters (<i>melanitta fusca deglandi</i>) at Redberry Lake, SaskatchewanTraylor, Joshua James 01 December 2003 (has links)
Population surveys indicate a declining trend in abundance for the scoter genus at the continental level. Little is known about changes in life history traits responsible for the recent population decline of white-winged scoters (<i>Melanitta fusca deglandi</i>, hereafter scoters). Therefore, I studied nesting and duckling ecology of scoters at Redberry Lake, Saskatchewan, Canada during summers 2000-2001 when I found 198 nests. To examine nest-site selection, I compared habitat features between successful nests, failed nests, and random sites. Discriminant function analysis differentiated habitat features, measured at hatch, between successful nests, failed nests, and random sites; lateral (r = 0.65) and overhead (r = 0.35) concealment were microhabitat variables most correlated with canonical discriminant functions. I also modeled daily survival rate (DSR) of nests as a function of year, linear and quadratic trends with nest age, nest initiation date, and seven microhabitat variables. Nest survival from a time constant model (i.e., Mayfield nest success estimate) was 0.35 (95% CL: 0.27, 0.43). Estimates of nest success were lower than those measured at Redberry Lake in the 1970s and 1980s. In addition to nest survival increasing throughout the laying period and stabilizing during incubation, nest survival showed positive relationships with nest concealment and distance to water, and a negative relationship with distance to edge. Considering these factors, a model-averaged estimate of nest survival was 0.24 (95% CL: 0.09, 0.42). I conclude that scoters selected nesting habitat adaptively because (1) successful sites were more concealed than failed sites, (2) nest sites (i.e., successful and failed) had higher concealment than random sites, and (3) nest sites were on islands where success is greater than mainland.
I then estimated duckling and brood survival with Cormack-Jolly-Seber models, implemented in Program Mark, from observations of 94 and 664 individually marked adult hens and ducklings, respectively. I tested hypotheses about duckling survival and (1) hatch date, (2) initial brood size at hatch, (3) duckling size and body condition at hatch, (4) offspring sex, (5) maternal female size and body condition at hatch, and (6) weather conditions within one week of hatching. Most mortality occurred during the first six days of duckling age. Variation in both duckling and brood survival were best modeled with effects of hatch date and initial brood size, while effects of female condition, female size, duckling size, and duckling condition were inconsistent. Survival probability clearly decreased with advancing hatch date and increased with larger initial brood sizes. Effects of weather and offspring sex in 2001, the only year such information was collected, suggested survival was negatively related to poor weather, but sex of ducklings, beyond size-related differences (i.e., sexual-size dimorphism), was unimportant. Estimates of survival to 28 days of age (30-day period), whether for ducklings (0.016, 0.021) or broods (0.084, 0.138) in 2000 or 2001, respectively, are the lowest of published studies and first for scoter broods in North America. I suspect intense gull predation shortly after hatch had the largest influence on duckling survival. Further research is needed to ascertain if low nesting success and duckling survival as well as other life cycle components are limiting scoter populations locally and throughout the rest of their breeding range.
|
137 |
Breeding Ecology Of The Egyptian Vulture (neophron Percnopterus) Population In BeypazariSen, Bilgecan 01 December 2012 (has links) (PDF)
The aim of this study was to determine the habitat features affecting nest site selection and breeding success of the endangered Egyptian Vultures (Neophron percnopterus) breeding around the town of Beypazari. We searched and monitored nest sites in the study area (750 km2) for the years 2010 and 2011. The differences in terms of habitat features between nest sites and random points distributed along cliffs, and between successful and failed nest sites were investigated using both parametric approaches and machine learning methods with 21 habitat variables. The size of the Beypazari population of Egyptian Vultures was estimated to be 45 pairs. Seventeen nests in 2010 and 37 nests in 2011 were found and monitored. The breeding success of the population was estimated to be 100% in 2010 and 70% in 2011. Random Forests was the modeling technique with the highest accuracy and the modeling process chose 6 and 4 variables affecting nest site selection and breeding success of the species, respectively. Results showed that human impact was a potential factor governing the distribution of nest sites in the area and increased the probability of breeding failure as vultures clearly preferred to nest away from nearby villages, towns and roads, and nests on lower cliffs and nests that are close to the dump site (therefore the town center) was prone to failure. Utilization of elevation gradient and aspect showed trends similar to other populations of the species, with probability of nesting increasing at lower altitudes and for south facing cliffs. The overall results emphasize the potential conflict between human presence and the population of Egyptian Vultures in the area. Continuous monitoring of the nest sites and conservation activities towards raising public awareness are advised.
|
138 |
Breeding Success And Reproductive Behavior In A White Stork ( Ciconia Ciconia) Colony In AnkaraGocek, Cagri 01 September 2006 (has links) (PDF)
White Stork ( Ciconia ciconia, Linnaeus, 1758) is a summer visitor and passage migrant in Turkey. Although being widespread in summer near wetlands of Turkey, except for the eastern and western parts of the Black Sea Region, there has been no research on this species involving regular monitoring of nests.
In this study, breeding success and survival of nestlings in a population in Kizilcahamam-Ankara as well as behavioral differences among nests and their probable consequences on breeding success were studied. Regular field observations throughout six-month long breeding seasons between 2003 and 2006 were carried out to determine parent and young behavior patterns at nest.
Clutch size, and numbers of chicks hatched and fledged fluctuated throughout 2003-2006 for pairs that bred while fledgling success (average fledgling per successful nests with egg laid) were 2.63 in 2003, 3.82 in 2004, 1.89 in 2005 and 3.13 in 2006. These values are in good agreement with those recorded in northern Europe.
The relationship between beginning date of incubation and both clutch size and brood size were found to be different for 2004 and 2005. Such a relationship may be significant in breeding seasons colder than usual.
For 2004 and 2005, the amount of food brought and caring towards young by parents were compared with breeding success (proportion of hatched young that were fledged), and breeding success was found to increase with increasing amount of food provisioning. However, this result may be suggested to be related with weather conditions. In conclusion, Kizilcahamam White Stork population has been found to be not restricted by food or nest site availability and with a reproductive output above the European average, although annual climatic stochasticity was found to affect reproductive output.
|
139 |
Population Dynamics of Northern Bobwhites in Southern TexasDemaso, Stephen 16 January 2010 (has links)
Northern bobwhites (Colinus virginianus) are an important cultural, ecological, and economical part of the southern Texas landscape. I used radio-telemetry data from 2000?2005, part of a long-term, bobwhite study in southern Texas, to test the nest-concealment hypothesis, develop a stochastic simulation model for bobwhite populations, and evaluate the influence of brush canopy coverage (BCC) on short- and long-term demographic performance of bobwhites.
Bobwhite nests tend to be situated in taller and denser vegetation than would be expected if nest-site location was a random process. I compared 4 microhabitat variables between successful (n = 135) and depredated nests (n = 118). I documented similar microhabitat attributes between successful and depredated nests. The discriminant function correctly classified only 48?59% of nest fates into the correct group, but only 18% of the variation in nest fate. Thus, my results did not support the nest-concealment hypothesis.
My stochastic simulation model for bobwhite populations is based on difference equations (?t = 3 months) and simulations run for 100 years using STELLA� 9.0.2. The probability of persistence for 100 years for the spring population was 74.2% and 72.5% for the fall population. Simulated population parameters were similar to those observed in the field for 5 of 6 population parameters. Only simulated male adult annual survival differed by 275.0% from field estimates. Despite this difference, my model appears to be a good predictor of bobwhite populations in the Rio Grande Plains of Texas.
I estimated bobwhite density, survival, and production (proportion of hens nesting, nesting attempts per hen, and clutch size) in 3 study areas with ~10%, ~25%, and >30% BBC. All demographic parameters were similar among the 3 BCC classes. However, simulation modeling indicated that long-term demographic performance was greater on the ~25% and >30% BCC classes. The probability of fall population persistence was greater in the ~25% (90.8%) and >30% (100.0%) BCC classes than in the ~10% BCC class (54.2%). My study highlights the shortcoming of considering only short-term effects when comparing habitat given that short- and long-term effects of habitat on demographic performance can differ.
|
140 |
Evolutionary and conservation implications of sex determination and hatchling depredation in Kemp's ridley sea turtles /Eich, Anne Marie LeBlanc. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed Feb. 1, 2010). Additional advisors: Ken Marion, David C. Rostal, Robert W. Thacker, Jeanette Wyneken. Electronic data (1 file : 10.93 mb). Includes bibliographical references (p. 13-18).
|
Page generated in 0.0722 seconds