Spelling suggestions: "subject:"bnetwork deployment"" "subject:"bnetwork eployment""
1 |
A Study of The Service Quality Improvement of The Network Deployment Process for The Telecommunications Industry by Simulation TechniqueChang, Jung-Wen 24 August 2011 (has links)
With the liberalization of the telecommunications industry, Taiwan has become a broadband networked society. People hope greatly that the current three private fixed network companies will break the telecommunications monopoly and bring new technology. Nevertheless, due to the fact that the existing service provider, Chunghwa Telecom, keeps raising difficulties over the connection of their lines and the regional governments also have many restrictions of the excavation and pipe laying, the service is unavailable in the place where there is no network deployment. Thus the fixed network companies build networks strategically in high-income metropolitan area and industrial park. The related quality management of network building is much significant.
A service blueprinting will identify possible fail points and weak links in the service delivery process and then improve service quality. This study of the analysis of the telecommunications network deployment is to explore possible fail points in the process and provide improvement plans through service blueprints. In order to know the results of process improvement, system simulation which can build the original and improved process modes and ARENA process simulation software for simulation and analysis in a variety of conditions will be used. When the related industries establish the perfect service model, this is for their reference.
|
2 |
On the Design of Energy Efficient Wireless Access NetworksTombaz, Sibel January 2014 (has links)
Wireless access networks today consume 0.5 percent of the global energy. Rapidly growing demand for new services and ubiqutious connectivity, will further increase the energy consumption. This situation imposes a big challenge for mobile operators not only due to soaring cost of energy, but also increasing concern for global warming and sustainable development. This thesis focuses on the energy efficiency issue at the system level and studies how to incorporate energy-awareness into the design of future wireless access networks. The main contributions have been given in the areas of energy efficiency assessment, architectural and operational solutions, and total cost of investment analysis. The precise evaluation of energy efficiency is the first essential step to determine optimized solutions where metrics and models constitute the two key elements.We show that maximizing energy efficiency is not always equivalent to minimizing energy consumption which is one of the main reasons behind the presented contradictory and disputable conclusions in the literature. Further we indicate that in order to avoid the debatable directions, energy efficient network design problems should be formulated with well defined coverage and capacity requirements. Moreover, we propose novel backhaul power consumption models considering various technology and architectural options relevant for urban and rural environments and show that backhaul will potentially become a bottleneck in future ultra-high capacity wireless access networks. Second, we focus on clean-slate network deployment solutions satisfying different quality of service requirements in a more energy efficient manner. We identify that the ratio between idle- and transmit power dependent power consumption of a base station as well as the network capacity requirement are the two key parameters that affect the energy-optimum design.While results show that macro cellular systems are the most energy efficient solution for moderate average traffic density, Hetnet solutions prevail homogeneous deployment due to their ability to increase the capacity with a relatively lower energy consumption and thus enable significant energy savings in medium and high capacity demand regions. Moreover, we investigate the energy saving potential of short-term energy aware management approach, i.e., cell DTX, taking advantage of low resource utilization in the current networks arising from strict QoS requirements. With the help of developed novel quantitative method, we show that Cell DTX brings striking reduction in energy consumption and further savings are achievable if the networks are designed taking into account the fact that network deployment and operation are closely related. Finally, we develop a general framework for investigating the main cost elements and for evaluating the viability of energy efficient solutions.We first reveal the strong positive impact of spectrum on both energy and infrastructure cost and further indicate that applying sustainable solutions might also bring total cost reduction, but the viability highly depends on unit cost values as well as the indirect cost benefits of energy efficiency. Results obtained in this dissertation might provide guidelines for the network designers to achieve future high-capacity and sustainable wireless access networks. / <p>QC 20140505</p>
|
3 |
Dynamic Deployment strategies in Ad-Hoc Sensor networks to optimize Coverage and Connectivity in Unknown Event Boundary detectionVenkataraman, Aparna 23 September 2011 (has links)
No description available.
|
4 |
Spectrum Sensing Receivers for Cognitive RadioKhatri, Vishal January 2016 (has links) (PDF)
Cognitive radios require spectral occupancy information in a given location, to avoid any interference with the existing licensed users. This is achieved by spectrum sensing. Existing narrowband, serial spectrum sensors are spectrally inefficient and power hungry. Wideband spectrum sensing increases the number of probable fre-quency candidates for cognitive radio. Wideband RF systems cannot use analog to digital converters (ADCs) for spectrum sensing without increasing the sampling rate and power consumption. The use of ADCs is limited because of the dynamic range of the signals that need to be sampled and the frequency of operation. In this work, we have presented a CMOS based area efficient, dedicated and scalable wideband parallel/serial spectrum sensor for cognitive radio.
The key contributions of the thesis are:
1. An injection locked oscillator cascade (ILOC) for parallel LO synthesis. An area-efficient, wideband RF frequency synthesizer, which simultaneously gen-erates multiple local oscillator (LO) signals, is designed. It is suitable for parallel wideband RF spectrum sensing in cognitive radios. The frequency synthesizer consists of an injection locked oscillator cascade where all the LO signals are derived from a single reference oscillator. The ILOC is implemented
in a 130-nm technology with an active area of 0.017 mm2. It generates 4 uni-formly spaced LO carrier frequencies from 500 MHz to 2 GHz.
2. A wideband, parallel RF spectrum sensor for cognitive radios has been de-signed. This spectrum sensor is designed to detect RF occupancy from 250 MHz to 5.25 GHz by using an array of CMOS receivers with envelope detec-tors. A parallel LO synthesizer is implemented as an ILOC. The simulated sensitivity is around -25 dBm for 250 MHz wide bandwidth.
3. A mitigation technique for harmonic downconversion in wideband spectrum sensors. The downconversion of radio frequency (RF) components around the harmonics of the local oscillator (LO), and its impact on the accuracy of white space detection using integrated spectrum sensors, is (are) studied. We propose an algorithm to mitigate the impact of harmonic Down conversion by utilizing multiple parallel downconverters in the system architecture. The proposed algorithm is validated on a test-board using commercially avail-able integrated circuits (IC) and a test-chip implemented in a 130-nm CMOS technology. The measured data shows that the impact of the harmonic down-conversion is closely related to the LO characteristics, and that much of it can be mitigated by the proposed technique.
4. A wideband spectrum sensor for narrowband energy detection. A wideband spectrum sensing system for cognitive radio is designed and implemented in a 130-nm RF mixed-mode CMOS technology. The system employs an I-Q downconverter, a pair of complex filters and a pair of envelope detectors for energy detection. The spectrum sensor works from 250 MHz to 3.25 GHz. The design makes use of the band pass nature of the complex filter to achieve two objectives : i) Separation of upper sideband (USB) and lower sideband (LSB) around the local oscillator (LO) signal and ii) Resolution of smaller bands within a large detection bandwidth. The measured sensitivity is close to -45 dBm for a single tone test over a bandwidth of 40 MHz. The measured Image reject ratio (IRR) is close to 30 dB. The overall sensing bandwidth is 3.5 GHz and the overall wideband detection bandwidth is 250 MHz which is partitioned into 40 MHz narrowband chunks with 8 such overlapping chunks.
|
Page generated in 0.0609 seconds