• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal resource management in wireless access networks

Mohsenian-Rad, Amir-Hamed 11 1900 (has links)
This thesis presents several simple, robust, and optimal resource management schemes for multihop wireless access networks with the main focus on multi-channel wireless mesh networks (MC WMNs). In this regard, various resource management optimization problems are formulated arid efficient algorithms are proposed to solve each problem. First, we consider the channel as signment problem in MC-WMNs and formulate different resource management problems within the general framework of network utility maximization (NUM). Unlike most of the previously proposed channel assignment schemes, our algorithms can not only assign the orthogonal (i.e., non-overlapped) channels, but also partially overlapped channels. This better utilizes the avail able frequency spectrum as a critical resource in MC-WMNs. Second, we propose two distributed random medium access control (MAC) algorithms to solve a non-convex NUM problem at the MAC layer. The first algorithm is fast, optimal, and robust to message loss and delay. It also only requires a limited message passing among the wireless nodes. Using distributed learning techniques, we then propose another NUM-based MAC algorithm which achieves the optimal performance without frequent message exchange. Third, based on our results on random MAC, we develop a distributed multi-interface multi-channel random access algorithm to solve the NUM problem in MC-WMNs. Different from most of the previous channel assignment schemes in the literature, where channel assignment is intuitively modeled in the form of combinatorial and discrete optimization problems, our scheme is based on formulating a novel continuous optimization model. This makes the analysis and implementation significantly easier. Finally, we consider the problem of pricing and monetary exchange in multi-hop wireless access networks, where each intermediate node receives a payment to compensate for its offered packet forwarding service. In this regard, we propose a market-based wireless access network model with two-fold pricing. It uses relay-pricing to encourage collaboration among the access points. It also uses interference pricing to leverage optimal resource management. In general, this thesis widely benefits from several mathematical techniques as both modeling and solution tools to achieve simple, robust, optimal, and practical resource management strategies for future wireless access networks.
2

Optimal resource management in wireless access networks

Mohsenian-Rad, Amir-Hamed 11 1900 (has links)
This thesis presents several simple, robust, and optimal resource management schemes for multihop wireless access networks with the main focus on multi-channel wireless mesh networks (MC WMNs). In this regard, various resource management optimization problems are formulated arid efficient algorithms are proposed to solve each problem. First, we consider the channel as signment problem in MC-WMNs and formulate different resource management problems within the general framework of network utility maximization (NUM). Unlike most of the previously proposed channel assignment schemes, our algorithms can not only assign the orthogonal (i.e., non-overlapped) channels, but also partially overlapped channels. This better utilizes the avail able frequency spectrum as a critical resource in MC-WMNs. Second, we propose two distributed random medium access control (MAC) algorithms to solve a non-convex NUM problem at the MAC layer. The first algorithm is fast, optimal, and robust to message loss and delay. It also only requires a limited message passing among the wireless nodes. Using distributed learning techniques, we then propose another NUM-based MAC algorithm which achieves the optimal performance without frequent message exchange. Third, based on our results on random MAC, we develop a distributed multi-interface multi-channel random access algorithm to solve the NUM problem in MC-WMNs. Different from most of the previous channel assignment schemes in the literature, where channel assignment is intuitively modeled in the form of combinatorial and discrete optimization problems, our scheme is based on formulating a novel continuous optimization model. This makes the analysis and implementation significantly easier. Finally, we consider the problem of pricing and monetary exchange in multi-hop wireless access networks, where each intermediate node receives a payment to compensate for its offered packet forwarding service. In this regard, we propose a market-based wireless access network model with two-fold pricing. It uses relay-pricing to encourage collaboration among the access points. It also uses interference pricing to leverage optimal resource management. In general, this thesis widely benefits from several mathematical techniques as both modeling and solution tools to achieve simple, robust, optimal, and practical resource management strategies for future wireless access networks.
3

Optimal resource management in wireless access networks

Mohsenian-Rad, Amir-Hamed 11 1900 (has links)
This thesis presents several simple, robust, and optimal resource management schemes for multihop wireless access networks with the main focus on multi-channel wireless mesh networks (MC WMNs). In this regard, various resource management optimization problems are formulated arid efficient algorithms are proposed to solve each problem. First, we consider the channel as signment problem in MC-WMNs and formulate different resource management problems within the general framework of network utility maximization (NUM). Unlike most of the previously proposed channel assignment schemes, our algorithms can not only assign the orthogonal (i.e., non-overlapped) channels, but also partially overlapped channels. This better utilizes the avail able frequency spectrum as a critical resource in MC-WMNs. Second, we propose two distributed random medium access control (MAC) algorithms to solve a non-convex NUM problem at the MAC layer. The first algorithm is fast, optimal, and robust to message loss and delay. It also only requires a limited message passing among the wireless nodes. Using distributed learning techniques, we then propose another NUM-based MAC algorithm which achieves the optimal performance without frequent message exchange. Third, based on our results on random MAC, we develop a distributed multi-interface multi-channel random access algorithm to solve the NUM problem in MC-WMNs. Different from most of the previous channel assignment schemes in the literature, where channel assignment is intuitively modeled in the form of combinatorial and discrete optimization problems, our scheme is based on formulating a novel continuous optimization model. This makes the analysis and implementation significantly easier. Finally, we consider the problem of pricing and monetary exchange in multi-hop wireless access networks, where each intermediate node receives a payment to compensate for its offered packet forwarding service. In this regard, we propose a market-based wireless access network model with two-fold pricing. It uses relay-pricing to encourage collaboration among the access points. It also uses interference pricing to leverage optimal resource management. In general, this thesis widely benefits from several mathematical techniques as both modeling and solution tools to achieve simple, robust, optimal, and practical resource management strategies for future wireless access networks. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
4

On the Design of Energy Efficient Wireless Access Networks

Tombaz, Sibel January 2014 (has links)
Wireless access networks today consume 0.5 percent of the global energy. Rapidly growing demand for new services and ubiqutious connectivity, will further increase the energy consumption. This situation imposes a big challenge for mobile operators not only due to soaring cost of energy, but also increasing concern for global warming and sustainable development. This thesis focuses on the energy efficiency issue at the system level and studies how to incorporate energy-awareness into the design of future wireless access networks. The main contributions have been given in the areas of energy efficiency assessment, architectural and operational solutions, and total cost of investment analysis. The precise evaluation of energy efficiency is the first essential step to determine optimized solutions where metrics and models constitute the two key elements.We show that maximizing energy efficiency is not always equivalent to minimizing energy consumption which is one of the main reasons behind the presented contradictory and disputable conclusions in the literature. Further we indicate that in order to avoid the debatable directions, energy efficient network design problems should be formulated with well defined coverage and capacity requirements. Moreover, we propose novel backhaul power consumption models considering various technology and architectural options relevant for urban and rural environments and show that backhaul will potentially become a bottleneck in future ultra-high capacity wireless access networks. Second, we focus on clean-slate network deployment solutions satisfying different quality of service requirements in a more energy efficient manner. We identify that the ratio between idle- and transmit power dependent power consumption of a base station as well as the network capacity requirement are the two key parameters that affect the energy-optimum design.While results show that macro cellular systems are the most energy efficient solution for moderate average traffic density, Hetnet solutions prevail homogeneous deployment due to their ability to increase the capacity with a relatively lower energy consumption and thus enable significant energy savings in medium and high capacity demand regions. Moreover, we investigate the energy saving potential of short-term energy aware management approach, i.e., cell DTX, taking advantage of low resource utilization in the current networks arising from strict QoS requirements. With the help of developed novel quantitative method, we show that Cell DTX brings striking reduction in energy consumption and further savings are achievable if the networks are designed taking into account the fact that network deployment and operation are closely related. Finally, we develop a general framework for investigating the main cost elements and for evaluating the viability of energy efficient solutions.We first reveal the strong positive impact of spectrum on both energy and infrastructure cost and further indicate that applying sustainable solutions might also bring total cost reduction, but the viability highly depends on unit cost values as well as the indirect cost benefits of energy efficiency. Results obtained in this dissertation might provide guidelines for the network designers to achieve future high-capacity and sustainable wireless access networks. / <p>QC 20140505</p>
5

Joint minimization of power and delay in wireless access networks / Minimisation conjointe de la puissance et du délai dans les réseaux d’accès sans-fil

Moety, Farah 04 December 2014 (has links)
Dans les réseaux d'accès sans fil, l'un des défis les plus récents est la réduction de la consommation d'énergie du réseau, tout en préservant la qualité de service perçue par les utilisateurs finaux. Cette thèse propose des solutions à ce problème difficile considérant deux objectifs, l'économie d'énergie et la minimisation du délai de transmission. Comme ces objectifs sont contradictoires, un compromis devient inévitable. Par conséquent, nous formulons un problème d’optimisation multi-objectif dont le but est la minimisation conjointe de la puissance consommée et du délai de transmission dans les réseaux sans-fil. La minimisation de la puissance est réalisée en ajustant le mode de fonctionnement des stations de base (BS) du réseau d’un niveau élevé de puissance d’émission vers un niveau d'émission plus faible ou même en mode veille. La minimisation du délai de transmission est réalisée par le meilleur rattachement des utilisateurs avec les BS du réseau. Nous couvrons deux réseaux sans-fil différents en raison de leur pertinence : les réseaux locaux sans-fil (IEEE 802.11 WLAN) et les réseaux cellulaires dotés de la technologie LTE. / In wireless access networks, one of the most recent challenges is reducing the power consumption of the network, while preserving the quality of service perceived by the end users. The present thesis provides solutions to this challenging problem considering two objectives, namely, saving power and minimizing the transmission delay. Since these objectives are conflicting, a tradeoff becomes inevitable. Therefore, we formulate a multi-objective optimization problem with aims of minimizing the network power consumption and transmission delay. Power saving is achieved by adjusting the operation mode of the network Base Stations (BSs) from high transmit power levels to low transmit levels or even sleep mode. Minimizing the transmission delay is achieved by selecting the best user association with the network BSs. We cover two different wireless networks, namely IEEE 802.11 wireless local area networks and LTE cellular networks.
6

Energy saving solutions for integrated optical-wireless access networks / Solutions pour économiser de l'énergie dans les réseaux d'accès intégrés : optiques-mobiles

Gonzalez Diaz, Glenda Zafir 09 July 2015 (has links)
L'explosion de demande de bande passante est une conséquence de l'augmentation du volume de trafic. Il est important de proposer des mécanismes pour transférer le trafic entre les réseaux interconnectés de manière efficace. D'autre part, il est prévu que les réseaux d'accès (optiques et mobiles) constituent les plus grands consommateurs d'énergie dans les réseaux optiques pour les dix prochaines années. Cette situation et l'impact croissant des réseaux sur l'environnement ont fait devenir l'efficacité énergétique dans les réseaux de télécommunications un thème important de recherche. Cette thèse se concentre donc sur la proposition de nouvelles solutions aux problèmes liées à l'augmentation du volume de trafic dans différentes segments des réseaux. Tout d'abord, nous avons étudié différents schèmes de transfert du trafic entre les réseaux interconnectes en utilisant la synchronisation. Puis, nous avons exploré la possibilité d'offrir différents services dans les réseaux intégrés optiques-mobiles. Nous avons présenté une nouvelle architecture pour la conception de l'unité de réseau optique (ONU). Ensuite, nous nous sommes focalisés sur l'économie de l'énergie et des solutions efficaces pour l'allocation de bande passante ont été proposées. Nous avons également proposé un algorithme qui fournit l'efficacité énergétique pour les récepteurs sans fil dans les ONUs hybride. Une analyse des performances en utilisant modèles de files d'attente a été présentée. Finalement, nous avons analysé le trafic hétérogène dans l'ONU hybride, et nous avons proposé un cadre pour un algorithme d'ordonnancement qui puisse mettre à jour les règles de service de façon dynamique / A big growth in the number of subscribers is increasing the traffic volume passing through each sector in a telecommunication network. Mechanisms are required to solve the traffic shift problem between two sectors of the network in an efficient way. Additionally, it is expected that the access networks (optical and wireless) will constitute the largest energy consumers among the networks for the next ten years. This situation and the increasing impact of networks on the environment have made become the energy efficiency in telecommunication networks an important theme for researches. This dissertation hence focuses on the proposition of novel solutions for deal with the problems due to the growing of traffic in different segments of the network. Firstly, we have studied the traffic shift between interconnected networks by using the synchronization as technique to solve this problem. Secondly, we have explored the possibility of provisioning different services over the integration of optical-wireless technologies, which has been considered as a promising candidate for the deployment of high-speed access networks. Architecture of design for the Optical Network Unit (ONU) is presented. Then, energy efficiency has been focused and effective bandwidth management solutions have been proposed. We have also proposed an energy efficiency algorithm for wireless receiver at hybrid ONUS. A performance analysis by queuing models was presented for the implementation of proposed solutions. Finally, we have analyzed the heterogeneous traffic at hybrid ONU, and we have proposed a framework for a scheduling algorithm considering the characteristics of different traffic sources
7

Modelling and Analysis of an Integrated Scheduling Scheme with Heterogeneous LRD and SRD Traffic

Jin, X.L., Min, Geyong January 2013 (has links)
no / Multimedia applications in wireless networks are usually categorized into various classes according to their traffic patterns and differentiated Quality-of-Service (QoS) requirements. The traffic of heterogeneous multimedia applications often exhibits the Long-Range Dependent (LRD) and Short-Range Dependent (SRD) properties, respectively. The integrated scheduling scheme that combines Priority Queuing (PQ) and Generalized Processor Sharing (GPS) within a hierarchical structure, referred to as PQ-GPS, has been identified as an efficient mechanism for QoS differentiation in wireless networks and attracted significant research efforts. However, due to the high complexity and interdependent relationship among traffic flows, modelling of the integrated scheduling scheme poses great challenges. To address this challenging and important research problem, we develop an original analytical model for PQ-GPS systems under heterogeneous LRD and SRD traffic. A cost-effective flow decomposition approach is proposed to equivalently divide the integrated scheduling system into a group of Single-Server Single-Queue (SSSQ) systems. The expressions for calculating the queue length distribution and loss probability of individual traffic flows are further derived. After validating its accuracy, the developed model is adopted as an efficient performance tool to investigate the important issues of resource allocation and call admission control in the integrated scheduling system under QoS constraints.

Page generated in 0.0732 seconds